R&S®RT06 OSCILLOSCOPE SERIES

Instant insight meets in-depth information

Product Brochure Version 02.01

Oscilloscope innovation. Measurement confidence.

Телефон: +7 (499) 685-7744 used@used4test.ru www.used4test.ru

ROHDE&SCHWARZ

Make ideas real

THE OSCILLOSCOPE YOU CAN TRUST

R&S®RT06 OSCILLOSCOPE SERIES

The R&S®RTO6 is the oscilloscope you can trust. Engineered to deliver reliable results, it is a sophisticated laboratory companion to solve measurement problems fast and keep things on schedule. R&S®RTO6 oscilloscopes leverage engineering expertise and improve measurement confidence with deep insights whenever needed.

R&S®RTO6 oscilloscopes provides superior signals for insight into your applications. The large 15.6" touchscreen and streamlined GUI, combined with high waveform update rate, excellent signal fidelity, digital trigger and deep responsive memory serve as a fully integrated test solution for frequency, protocol and logic analysis. The rich measurement toolset for R&S®RTO6 oscilloscopes and streamlined user interface help quickly solve circuit issues, from simple to complex.

A high input sensitivity and very low inherent noise mean that R&S®RTO6 oscilloscopes are optimized to perform precise measurements. High-definition (HD) mode enables easy visualization and triggering on signals with up to 16 bit resolution. R&S®RTO6 oscilloscopes detect and display sporadic signal faults with an industry-leading update rate of up to 1 million waveforms/s.

Today's designs cross multiple measurement domains: time, frequency and protocol. R&S®RTO6 oscilloscopes simplify debugging of systems with different signal types by providing a flexible user interface that allows these domains to be viewed simultaneously. The Rohde&Schwarz digital trigger architecture also enables triggering on complex signal details. This unique trigger system even lets you specify "where" to trigger in the time or frequency domain simply by drawing a special zone directly on the waveform screen.

R&S®RTO6 oscilloscopes are extremely easy to use. The touchscreen-optimized GUI has gesture operations and the R&S®SmartGrid function for complex screen layouts. Setting up intricate measurement tasks is only a matter of dragging waveforms to where they work best for you. The app cockpit provides a one-tap location to access all of the available oscilloscope applications.

CONTENTS

FEATURES AND BENEFITS

APPLICATIONS

COMPACT AND CONFIGURABLE

Providing superior measurements

▶ page 4

Finding signal anomalies quickly

▶ page 5

Capturing all signal details

▶ page 6

Seeing more

▶ page 7

Finding complex signal details

page 8

Measuring more

▶ page 9

Enhanced usability

▶ page 10

Superior user experience

▶ page 12

Tackling novel, complex issues

▶ page 14

Comprehensive tools for fast and accurate results

▶ page 14

Spectrum analysis

▶ page 16

Power analysis and EMI debugging

▶ page 18

Power integrity

▶ page 19

Serial bus analysis

▶ page 20

Automated compliance tests

▶ page 21

Serial integrity analysis

page 22

Wideband RF and signal analysis

▶ page 23

Logic analysis

▶ page 24

Specialized signal analysis

page 25

Compact and configurable

▶ page 26

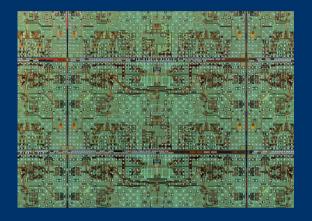
Accessories

▶ page 27

Extensive probe portfolio

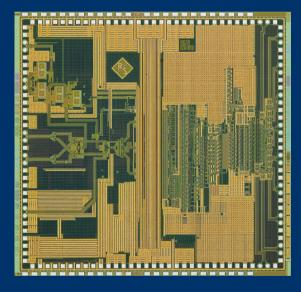
▶ page 28

Future-proof your instrument

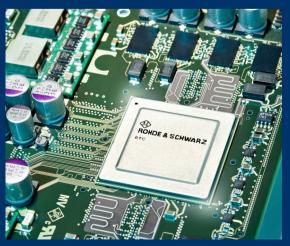

▶ page 30

- 6 GHz maximum bandwidth
- ▶ 1 million waveforms/s
- 9.4 effective number of bits (ENOB) for ultimate signal integrity
- 2 Gpoints maximum memory
- Exclusive frequency zone trigger

PROVIDING SUPERIOR MEASUREMENTS


ENABLING TECHNOLOGIES

Rohde & Schwarz oscilloscopes utilize leading-edge technologies to achieve trustworthy and replicable results. Unique components and innovative features are the key for Rohde & Schwarz oscilloscope users to boost the understanding of their circuit behaviors and quickly advance from signal to insight.


Superior low-noise components

Measurement accuracy is highly dependent on components in a signal path, such as amplifiers, samplers and A/D converters. Rohde & Schwarz has the in-house expertise to design the best analog circuits. Precise measurements benefit from low noise, high measurement dynamic range and extremely stable results.

Outstanding A/D converter

Rohde&Schwarz developed a highly capable A/D converter for R&S®RTO6 oscilloscopes. The sophisticated architecture of this chip minimizes signal distortion and has outstanding vertical resolution and excellent spurious-free dynamic range. The minimized signal distortion is an excellent foundation for precise signal analysis in the optional high-definition (HD) mode. This unique mode further reduces noise, enabling acquisitions and triggers with up to 16 bit resolution.

Fastest throughput ASIC

Every oscilloscope from the R&S°RTO6 series contains an application-specific integrated circuit (ASIC) designed specifically for intensive parallel processing. It processes in real-time during acquisition and quickly prepares a display on the large 15.6" touchscreen. R&S°RTO6 oscilloscopes acquire, analyze and display waveforms with extremely high acquisition rates even while performing measurement and analysis tasks. As a result, these instruments help you find faults significantly faster and more reliably.

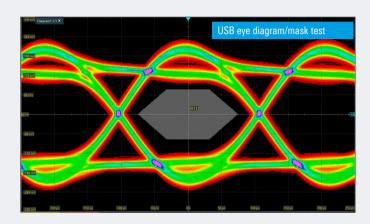
FINDING SIGNAL ANOMALIES QUICKLY

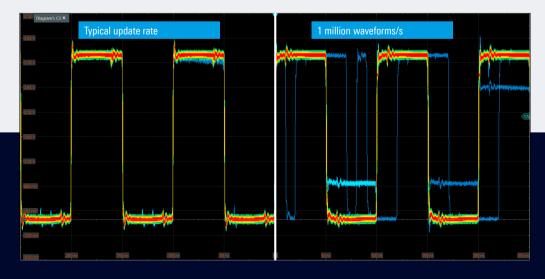
WITH UNPARALLELED UPDATE RATES

1000000 waveforms/s

The R&S®RTO6 oscilloscope processing path implements a dedicated ASIC. With optimized signal processing, R&S®RTO6 oscilloscopes reach an exceptional update rate. The unique architecture allows the R&S®RTO6 to acquire, process and display up to 1 million waveforms/s.

Available with active histograms, masks or cursor measurements

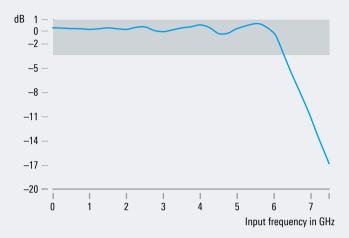

R&S®RTO6 oscilloscopes have a high update rate even when histograms, masks or cursor measurements are active. Also when performing analysis with deep memory acquisitions, the ASIC-based signal processing paths ensure smooth workflows.


Quickly and reliably detect sporadic signal faults

The statistical confidence in results is higher the more waveforms are acquired. A high update rate increases the likelihood of detecting and displaying signal faults and including them in analysis. The high update rate enables the R&S®RTO6 to generate trustworthy statistical results based on a high number of waveforms in a short time. This is crucial for quickly understanding electronic circuits.

Mask testing: quick configuration and fast results

Mask tests quickly reveal whether a specific signal lies within defined tolerance limits, providing pass/fail evaluations for assessing the quality and stability of a device under test (DUT). Signal anomalies and unexpected results are easy to identify. Defining masks is easy and flexible with the R&S®RTO6: just a few touchscreen or mouse gestures, generate a mask from a reference signal or define masks consisting of up to eight segments.



CAPTURING ALL SIGNAL DETAILS

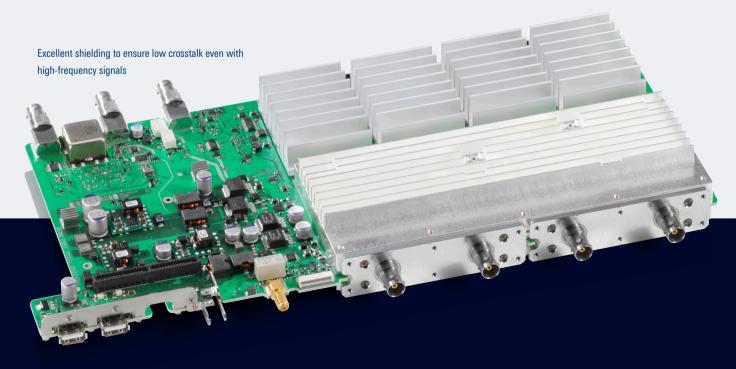
WITH EXCELLENT SIGNAL INTEGRITY

Measured frequency response of the R&S®RT06

Flat frequency response

For accurate signal acquisition, R&S®RTO6 oscilloscopes have a flat frequency response over the entire specified bandwidth, ensuring accurate measurement results regardless of the signal frequency components. The Gaussian falloff in frequency response leads to low overshoot and precise acquisition of signal edges.

Low-noise frontends and minimized crosstalk


All aspects to minimize noise were considered for both 50 Ω and 1 $M\Omega$ input paths, from balanced BNC-compatible inputs with 18 GHz bandwidth to extremely low-inherent-noise frontends. The superb channel-to-channel isolation of > 60 dB up to 2 GHz for R&S°RTO6 oscilloscopes ensures that measurement signals from one channel have the least possible influence on signals in the neighboring channel.

Excellent long-term stability

A reference oven-controlled crystal oscillator (OCXO) optimizes R&S®RTO6 oscilloscopes for long-term stability.

Outstanding A/D converter with ultra-wide SFDR

R&S®RTO6 oscilloscopes incorporate exceptional custom A/D converters with extremely small linearity errors, resulting in an ultrawide spurious-free dynamic range (SFDR) of 65 dBc. This both provides the foundation for excellent signal integrity, while also enabling further noise reduction with HD filtering of R&S®RTO6 oscilloscopes as well as an outstanding 9.4 ENOB.

SEEING MORE

WITH UP TO 16 bit RESOLUTION

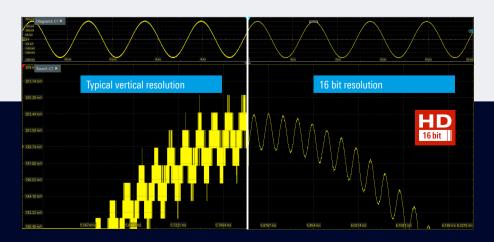
16 bit resolution for measuring small signal amplitudes

The high-definition (HD) mode increases the vertical resolution of R&S®RTO6 oscilloscopes up to 16 bit with digital filtering. The increased resolution results in sharper waveforms and reveals more signal details that might be masked by noise. For 16 bit vertical resolution, the signal is lowpass filtered after the A/D converter. Adjusting the lowpass filter bandwidth from 10 kHz to 2 GHz enables matching of the applied signal characteristics: The lower the filter bandwidth, the higher the resolution.

Full sample rate: no aliasing

The HD mode offers significant advantages over traditional high-resolution decimation. It increases vertical resolution without reducing sampling rates. Since the HD mode does not decimate data it ensures the best time resolution and does not cause unexpected aliasing effects. It also conveys exactly which signal bandwidth is available thanks to explicit lowpass filtering.

Resolution as a function of the filter bandwidth			
Filter	Resolution		
Inactive	8 bit		
2 GHz ¹⁾	10 bit		
500 MHz	12 bit		
300 MHz	12 bit		
200 MHz	13 bit		
100 MHz	14 bit		
50 MHz to 10 kHz	16 bit		


¹⁾ 2 GHz for 20 Gsample/s, 1 GHz for 10 Gsample/s.

User-selectable filtering: reduced noise, increased ENOB

The HD mode filter reduces the noise in real-time, increasing the signal-to-noise ratio (SNR). The user can choose between Gaussian or brick wall filter characteristics to optimize the oscilloscope step response or noise level. An exceptionally low noise level of 10 µV (1 mV/div, 10 MHz filter bandwidth) is possible as well as outstanding 9.4 ENOB (50 mV/div, 50 MHz filter bandwidth, 30 MHz input frequency) – both at the full sample rate.

High acquisition rate and full functionality

On R&S®RTO6 oscilloscopes, activating the high definition mode does not compromise measurement speed or function. The ASIC signal processing implements lowpass filtering in real-time to maintain high acquisition and processing rates. Oscilloscope operation remains smooth and measurement results are available quickly. All analysis tools are available in HD mode, including automatic measurements and FFT.

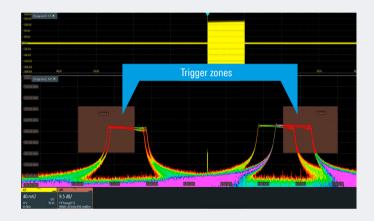
FINDING COMPLEX SIGNAL DETAILS

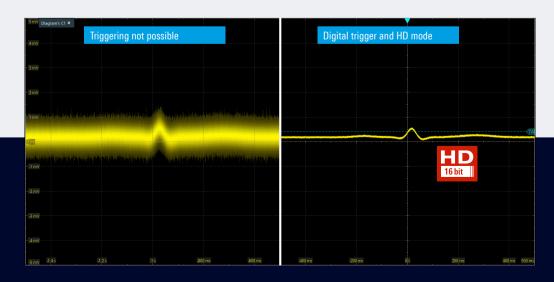
WITH ADVANCED TRIGGER CAPABILITIES

Unique trigger system

The patented digital trigger system uses A/D converter sampling points in the acquisition path, so that input data of the trigger system is identical to the displayed signal. The digital trigger validates every acquired sample against the trigger definition. R&S®RTO6 oscilloscopes trigger even on the smallest signal amplitudes.

High trigger sensitivity at full bandwidth

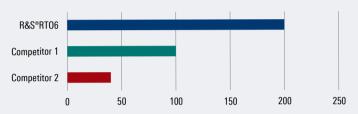

For stable triggering regardless of signal noise levels, the user can set the trigger hysteresis for the oscilloscopes. Due to the low noise frontends, the oscilloscopes can also trigger on signals with high vertical input sensitivities at full measurement bandwidth.


Isolate smallest signal details

R&S°RTO6 oscilloscopes can trigger on even the smallest signal amplitudes and isolate relevant signal events. This capability is possible even when combining the digital trigger and the HD mode, which increases the oscilloscope's vertical resolution up to 16 bit. The digital trigger system checks each of the 16 bit samples against the trigger condition in real-time and can initiate a trigger. This means that R&S°RTO6 oscilloscopes have the best trigger sensitivity in the industry.

Zone trigger in time and frequency domain

Draw shapes on a waveform to have R&S®RTO6 oscilloscopes zone trigger graphically separate events in both the time and frequency domains. Define up to eight zones and logically combine them over multiple channels or math functions. Zones activate a trigger signal when a signal either intersects or does not intersect the zone which can be a real-time waveform or a spectrum plot. For example, this powerful, yet easy-to-use feature makes it possible to separate read/write sequences from a DUT memory system.

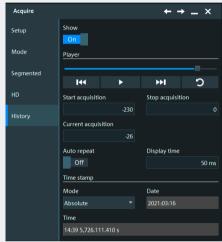

MEASURING MORE

WITH DEEP AND RESPONSIVE MEMORY

Maximized memory: 200 Mpoints standard, 2 Gpoints optional

The basic configuration of R&S®RTO6 oscilloscopes offer 200 Mpoints acquisition memory per channel. Applications such as seamless acquisition of long pulse or protocol sequences often require even deeper memory. The R&S®RTO6 oscilloscope acquisition memory can be extended up to 2 Gpoints. Even with deep memory acquisitions, ASIC signal processing ensures a smooth workflow.

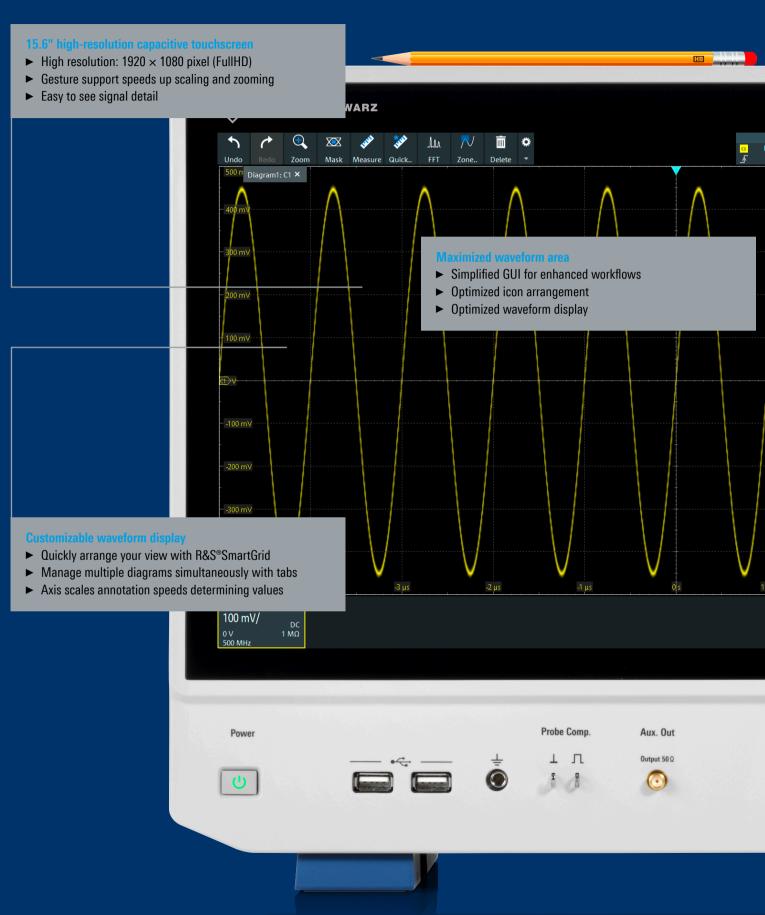
Acquisition time in ms (at 10 Gsample/s)


Segmented memory to capture distant trigger events

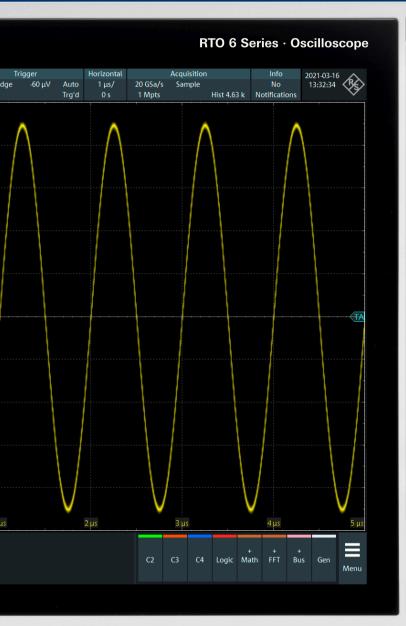
Standard segmented memory analyzes signal sequences over a long observation period, capturing protocol-based signals with communications gaps such as I²C and SPI over extended periods without wasting storage on idle time. Thanks to a variable segment size, the deep memory is optimally utilized and numerous consecutive individual segments are possible. The segmented memory of the R&S®RTO6 lets you capture more than 100000 timestamped acquisitions.

Single-shot versus segmented acquisition Protocol based signal with communications pauses Single-shot acquisition Conventional single-shot acquisition Missed acquisition due to limited memory Acquisition of few pulses with many periods of inactivity Acquisition using segmented memory Acquisition of signal segments with activity Analysis of each segment using the history function #1 #2 #3 #4 #5 #6 #7 Display and analysis of each signal element

History mode to analyze previous trigger events


The always-on history function of R&S®RTO6 oscilloscopes ensures access to waveforms previously stored in the memory. A trigger timestamp enables straightforward time correlation. You can view and analyze all captured signals with the zoom, measurement, math and spectrum analysis functions.

Search and navigation: find faults fast


Comprehensive search functions simplify the analysis of long signal sequences. Search for waveforms based on different criteria, such as signal fault, signal pattern and protocol contents. Search on analog or digital channels, on reference or math waveforms and on serial, protocolbased buses as needed for your specific applications. An easy-to-read table shows all detected events with timestamps. Examine the individual events in a zoom window and navigate between them. View details such as the number of glitch errors in a table and have each individual glitch in the waveform correlated with other signals.

ENHANCED USABILITY

Intuitive front panel increases user productivity

- ► Fast, direct access to primary instrument settings
- ► Quickly adjust settings with knobs and buttons
- Sectional layout makes finding the right button easy

RTO64 · 6GHz · 20GSa/s

Clear orientation with color-coded LEDs

- ► Color-coded buttons and knobs enable fast association with sources
- ► Indication of currently selected channel
- ► Speed setting changes with fine/course pushable adjustment

Active probe interface

- ► Supports over 30 Rohde & Schwarz current and voltage probes
- ▶ 50 Ω and 1 M Ω path enable support of an even wider range of passive and active probes, including ones from third parties

000000

C3

C2

C1

SUPERIOR USER EXPERIENCE

ADVANCED USABILITY, EASY DOCUMENTATION, FAST REMOTE CONTROL

Quick access to important tools

The toolbar 1 enables quick access to important tools. Here you can directly set the most common parameters in a simple overlay menu, including FFT start/stop, span and RBW 2. Choose from 28 different tools for maximum flexibility. The upper menu also displays trigger, horizontal and acquisition settings 3.

Advanced setup with compact menu structure

An advanced setup 4 is available for tools where detailed parameters can be defined, such as FFT window type and span/RBW coupling. The compact menu structure allows you to directly see the impact of measurement modifications.

Signal bar and preview icons

Activated signals appear in the flexible R&S°SmartGrid 5, along with the fundamental signal parameters displayed in the signal bar 6. From here, drag&drop into the R&S°SmartGrid for an individual waveform layout. A signal preview is also available in the signal bar for minimized signals 7.

Signal activators and main menu

Signals activators 8 turn on different signals with just one touch/click (analog channels, math, FFT, serial protocols, signal generator), making possible the straightforward configuration of your measurement setup. The main menu provides access to all instruments settings.


Save results fast

Save waveforms in various file formats or download them via Ethernet for later analysis with MATLAB® or Excel. Continuous acquisition, analysis and transmission to a PC via Ethernet is possible with 100 waveforms/s. You can also save screen content or print it directly from the oscilloscope.

Documentation at the press of a button

Document your measurements quickly:

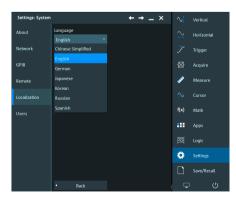
- ► Screenshots include waveforms and results
- ► Reports include screenshots and instrument setup
- ► Clear grid annotations make for easy-to-read signal characteristics
- ► Color-coded labels highlight anomalies in the diagram
- Save waveforms, histograms and measurement results in binary, XLS or CSV formats are available for signal analysis on a PC

Remote control access: anytime, anywhere

Remotely control the oscilloscope and view the display on a PC or mobile device. View the same user interface on the oscilloscope. All oscilloscope functions are also available remotely via Ethernet, GPIB or the USB interface.

Storage option	s	
Onefile	complete	stores waveform, setup, math channels, reference waveforms in one zip file
Contents	waveform	complete
		selection (zoom, cursor, gate, manual)
		number of acquisitions
		history memory
Evaluation		histograms
		measurement results
		long-term trend
Format	measurement data	binary, XLS, CSV, 1 to 4 channels
	graphics	PNG, JPG, BMP, TIF, PDF
	reports	PDF, HTML, DOC
Drivers		VXi, LabView, LabWindows, .NET

Easy selection of instrument setup

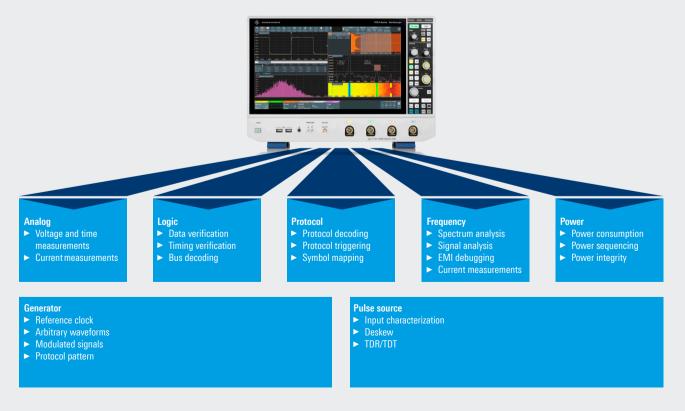

Each save set is stored along with an instrument setup including a screenshot of the most recent oscilloscope display. To open a specific instrument setup later, simply scroll through the screenshots to find the right configuration.

Language selection

The R&S®RTO6 oscilloscope user interface supports multiple languages. Just a few seconds are needed to switch languages while the instrument is running, making the oscilloscope truly international.

TACKLING NOVEL, COMPLEX ISSUES

COMPREHENSIVE TOOLS FOR FAST AND ACCURATE RESULTS


- ► Hardware-accelerated measurement functions and math operations
- ► Wide range of basic analysis functions
- ► Multi-instrument capabilities
- Industry-leading zone trigger and mask testing
- Application-specific software options

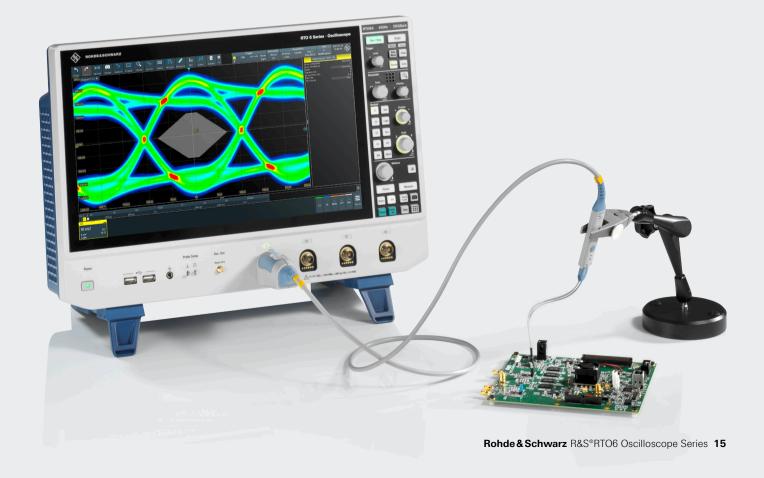
Time-correlated analysis of multiple signal types

R&S®RTO6 oscilloscopes address various test requirements for highly integrated devices. They combine multiple test instrument capabilities in a single box:

- ► The analog channels offer superior signal fidelity and fast measurements, with limit tests and histograms as well as hardware-accelerated mask testing.
- ► General purpose resources, such as the standard enabled digital channels (MSO) or the arbitrary waveform generator, allow logic analysis and/or protocol-based testing of serial buses, including symbolic decoding and advanced bus analysis.
- ► The R&S®RTO6 provides comprehensive tools for fast and detailed signal analysis in the frequency domain and shows correlation with the time domain.

R&S®RT06 oscilloscope offers multiple test instruments in one

Rich debugging toolset


Every R&S®RTO6 oscilloscope has over 90 measurement functions. They are organized by type into amplitude, time, jitter, eye, histogram and spectral measurements. Statistics, histograms, trend and track functions facilitate detailed analysis of measurement results. These results can also be used in math functions.

Available signal analysis options display of average value, minimum/maximum value and **Statistics** standard deviation graphic display of events as histogram; definition of Histogram measurement range and resolution for histogram (manual or automatic) long-term trend function for analyzing slowly developing variations in measurement results (easy Trend identification of thermal dependencies within measureanalysis of rapidly changing measurement results in Track time periods; display results over entire acquisition restriction of the measurement range to a specific sig-Gating nal range (manually defined or linked to existing cursor or zoom ranges) definition of reference lines (manual, automatic or Reference lines averaged); optional display in the waveform graphic display of results on waveform, Waveform e.g. for documentation Multiple definition of the maximum number of measurements measurements per waveform

Application-specific software for your technology

R&S®RTO6 oscilloscopes have a multitude of application-specific software options to tailor your oscilloscope to your application needs and provide in-depth capabilities for all your different tasks, ranging from general signal and spectrum analysis to more complex assignments such as jitter decomposition and TDR/TDT analysis. The software options are also available after purchase with a simple keycode upgrade.

Analysis options	
I/Q interface	R&S®RTO6-K11
Clock data recovery	R&S®RTO6-K13
Power analysis	R&S®RTO6-K31
Spectrum analysis	R&S®RTO6-K37
Deembedding	R&S®RTO6-K121
TDR/TDT analysis	R&S®RTO6-K130
Jitter analysis	R&S®RTO6-K12
Advanced jitter	R&S®RTO6-K133
Advanced noise	R&S®RTO6-K134

SPECTRUM ANALYSIS

RF knowledge in an oscilloscope

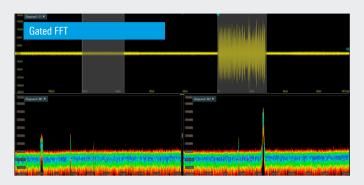
- ► Multichannel spectrum analysis (up to eight in parallel)
- ► Zone trigger for time and frequency domain
- ► Gated FFT for easy frequency and time correlation
- Spectrogram displays changes in spectrum over time
- ► Better and faster insights: logarithmic display and peak list

Set up as a spectrum analyzer

Operate the R&S®RTO6 frequency analysis function like a spectrum analyzer. Simply enter the typical parameters: center frequency, span and resolution bandwidth. Select the window type, FFT overlap, gating and logarithmic or linear Y-axis scaling based on application requirements.

Overlap FFT

The R&S®RTO6 oscilloscope's overlap FFT splits the captured time-domain signal into overlapping segments and calculates an individual spectrum for each segment. These spectra are then compiled and combined to a complete spectrum with color-coding that corresponds to the frequency of occurrence. The complete spectrum provides a very good overview of the type and recurrence of different frequency emissions. Even sporadic signals are visible.

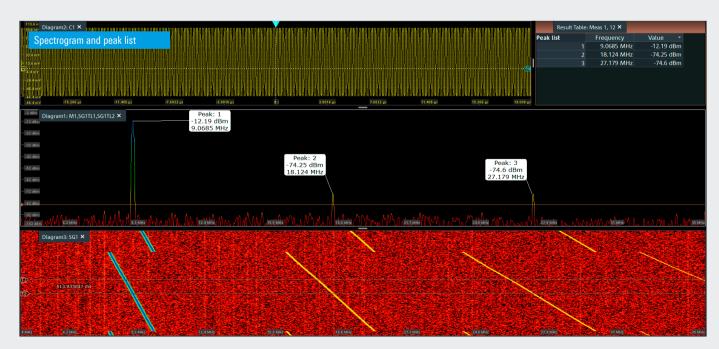

Multiple FFTs with outstanding RF performance

R&S®RTO6 oscilloscopes support powerful multichannel spectrum analysis for up to eight signals in parallel. Their high dynamic range and input sensitivity of 1 mV/div at full measurement bandwidth make it possible to detect even weak emissions. The powerful FFT implementation is ideal for required analysis in the frequency domain thanks to its easy operation, high acquisition rate and functions such as color-coding of the spectral display according to the frequency of occurrence.

Gated FFT: frequency and time correlation

The R&S®RTO6 oscilloscope gated FFT function applies FFT analysis only to user-defined regions of the acquired time domain signal. Users can move the time window across the entire waveform to determine which segments of the time domain signal correlate to certain events in the spectrum. This makes it possible to correlate unwanted emissions from switched-mode power supplies with overshoots from the switching transistor.

Spectrogram: display changes in power and frequency over time


The R&S®RTO6 spectrum analysis option is ideal for analyzing time varying signals in the frequency domain. Its spectrogram is a color-coded frequency-timing diagram that displays the spectral power over time. It indicates how the spectrum varies over time in a two-dimensional intensity diagram. R&S®RTO6 oscilloscopes allow you to guickly analyze voice and AM/FM modulated signals as well as signals from radar and frequency-hopping systems.

Frequency analysis with logarithmic display

The R&S®RTO6 oscilloscope spectrum analysis option enables logarithmic frequency scaling for spectrum and spectrogram displays.

Fast results with automatic peak list measurement

The peak list measurement automatically detects peaks in the FFT spectrum and indicates their magnitude and frequency in the spectrum graph and in a result table.

POWER ANALYSIS AND EMI DEBUGGING

Engineered for power and EMI measurements

- ► See power signal details with up to 16 bit resolution
- ► Maintain fast sampling rates with deep memory
- ► Visualize sporadic emissions
- ► Specialized measurement functions: fast and accurate results
- ► Extensive probe portfolio: high voltage and current probes

See power signal details with up to 16 bit resolution

Even the smallest signal details of a high dynamic signal matter in power measurements, for example when verifying RDS_{on} of a MOSFET. The HD mode of R&S®RTO6 oscilloscopes increases the vertical resolution to up to 16 bit, so that previously unseen signal details become visible and measurable.

Specialized measurement functions and harmonic current analysis

Characterize power electronics with the R&S®RTO6 oscilloscope power analysis option. Automated measurement functions analyze the turn on/off behavior, the internal transfer function, the safe operating area (SOA), the output signal quality and switching losses. You can also test all common international standards.

Maintaining fast sampling rates with deep memory

Analyzing start-up, shut-down or transients of power supplies requires a high sample rate and long recording times. With up to 1 Gpoints memory, R&S®RTO6 oscilloscopes enable recording of lengthy sequences while maintaining high sampling rates of up to 20 Gsample/s.

Power measurement functions			
Input	quality, inrush current, harmonics (precompli- ance checking for IEC 61000-3-2 (A, B, C, D), RTCA DO-160, MIL-STD-1399)		
Switching/control loop	slew rate, modulation, dynamic on-resistance		
Power path	efficiency, loss, safe operating area (SOA), turn on/off		
Output	ripple, spectrum (double-logarithmic scale), transient response		
Deskew	automated		

Detect weak emissions with high dynamic range and input sensitivity

The high dynamic range and input sensitivity of 1 mV/div at full measurement bandwidth make it possible to detect even weak emissions with R&S®RTO6 oscilloscopes. The powerful FFT capabilities are ideal for EMI analysis in the frequency domain thanks to their easy operation, high acquisition rate and manifold functions, such as color coding of the spectral display according to frequency of occurrence.

Extensive analysis for EMI debugging

The mask trigger in the frequency domain is ideal for detecting sporadic emission frequencies. The stop-on-violation condition halts acquisition if the spectrum violates the frequency mask. The gated FFT capability provides better insight by displaying the time and frequency domain correlation over a user-defined window.

Probes for high voltage, current and near-field measurements

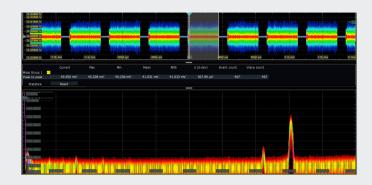
The Rohde & Schwarz oscilloscope probe portfolio includes specific probes for power measurements and EMI debugging. The portfolio covers high voltage probes and differential probes for voltages up to 6000 V (peak) with exceptional common mode rejection ratios over a broad frequency range, as well as current probes for accurate, non-intrusive measurements of DC and AC currents in the range of 1 mA to 2000 A with a maximum bandwidth of up to 120 MHz. E and H near-field probes are available for the frequency range from 9 kHz to 3 GHz with optional preamplifier for EMI debugging.

POWER INTEGRITY

Debugging and validating power rails

- ► Accurately measure power ripple and PARD
- Find coupled sources with fast FFT
- Power rail characterization with high-fidelity probes
- Large DC offsets and integrated high precision DC voltmeter

Accurately measure ripple and PARD


As power rail tolerance levels decrease, accurately measuring power ripple becomes increasingly difficult. The inherent low noise of R&S®RTO6 oscilloscopes enables accurate power integrity measurements at the millivolt level. The fast update rate of the oscilloscopes allows you to quickly see infrequent and worst case ripple as well as periodic and random disturbance (PARD) anomalies.

Find coupled sources

The most capable FFT in the industry lets you can see switching characteristics or quickly scan for sources coupled with the power rail. The FFT algorithm allows you to analyze the spectrum independently of the time domain settings. This provides a quick and comprehensive picture of your power rails.

Measuring small voltages riding on large DC offsets

With the ±60 V offset compensation range, the R&S®RT-ZPR power rail probes allow you to focus on small ripples in the power rail DC voltage. Whether you need to zoom in on a 1 V or much higher DC level, the probe provides the required offset while maintaining the highest vertical resolution.

R&S®ProbeMeter: integrated voltmeter for precise **DC** measurements

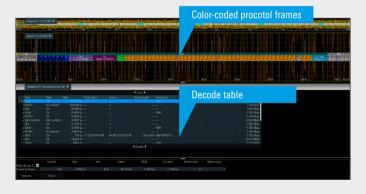
The R&S®ProbeMeter lets you see the oscilloscope waveform and DC value regardless of other instrument settings, just like a highly accurate voltmeter. All voltage probes with Rohde & Schwarz probe interfaces support the R&S®ProbeMeter.

Power rail characterization with high fidelity probes

High bandwidth, high sensitivity, very low noise and an extra-large offset compensation make the R&S®RT-ZPR an excellent probe for characterizing power rails. With a bandwidth of up to 4 GHz, excellent sensitivity thanks to the 1:1 attenuation ratio and low noise, the R&S®RT-ZPR is ideal for precise ripple measurements. Coupled with the powerful frequency analysis capabilities of the oscilloscope, R&S®RT-ZPR probes can be used to isolate PARD. An integrated high-precision DC voltmeter provides an instantaneous DC voltage readout in parallel.

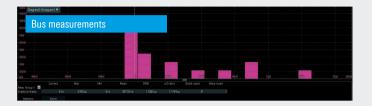
SERIAL BUS ANALYSIS

Easy triggering, decoding and protocol analysis


- ► Hardware-based triggering and decoding for fast analysis
- ► Decoding of up to four serial buses simultaneously
- ► Advanced bus measurements for in-depth analysis
- Search functions for easier analysis of long and complex signals

Isolate protocol specific events

The R&S®RTO6 makes tracking down protocol errors or specific parts of a frame straightforward with a protocol aware trigger. The oscilloscope offers hardware-based triggering on specific protocol content, such as addresses, data and protocol errors.


High acquisition rate for finding errors quickly

Data errors on serial interfaces are frequently the result of sporadic signal faults from borderline timing of logic components. The high acquisition rate of R&S®RTO6 oscilloscopes is ideal for finding such signal faults because they decode the protocol-specific trigger results very quickly. So, errors are swiftly found and immediately displayed.

Advanced bus measurements

R&S®RTO6-K500 bus measurement option enables indepth analysis of decoded data. For example, you can quickly determine the stability of a bus by detecting the frame error rate including consecutive frame errors. Analyze bus timing by measuring the delay between frames or between any trigger event and the bus frame.

Fast and efficient data search

Comprehensive search and filter functions simplify analysis of long signal sequences. They permit users to quickly track down specific data types, content and errors. All detected events are shown in a table with timestamps. The user can then examine the individual events in a zoom window with associated timing correlation and navigate between events.

Segmented memory for long time capture

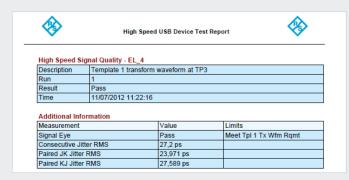
Standard segmented memory is ideal for serial protocols. It allows you to capture only the relevant packets and ignore the long idle time in between packets. The R&S*RTO6 can capture more than 100 000 timestamped packets.

Trigger and decode packages		Included protocols
R&S®RTO6-K500	bus analysis	
R&S®RTO6-K510	low speed serial buses	I ² C/SPI/RS-232/UART/I ² S/LJ/RJ/TDM/Manchester/NRZ
R&S®RTO6-K520	automotive protocols	CAN/LIN incl. CAN-dbc file import/CAN-FD, FlexRay™ incl. Fibex file import/SENT/CXPI
R&S®RTO6-K530	aerospace protocols	MIL-STD-1553/ARINC 429/SpaceWire
R&S®RTO6-K540	Ethernet protocols	10BASE-T/100BASE-TX/MDIO
R&S®RTO6-K550	MIPI RFFE	MIPI RFFE
R&S®RTO6-K560	automotive Ethernet	IEEE 100BASE-T1/IEEE 1000BASE-T1
R&S®RTO6-K570	USB protocols	USB 1.0/1.1/USB 2.0/HSIC/USB 3.1 Gen 1, USB Power Delivery (USB-PD)/USB SSIC
R&S®RTO6-K580	MIPI M-PHY, D-PHY	MIPI D-PHY/M-PHY/UniPro/decoding for DSI und CSI-2
R&S®RTO6-K590	PCI Express	8b10b (up to 6.25 Gbit/s)/ PCI Express Revision 1.x/2.x
R&S®RTO6-TDBDL	trigger and decode bundle	R&S*RTO6-K500/-K510/-K520/-K530/-K540/-K550/-K560/-K570/ -K580/-K590

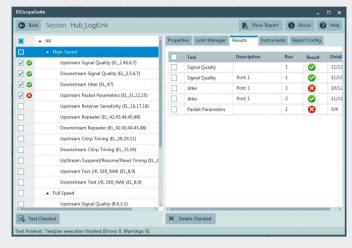
AUTOMATED COMPLIANCE TESTS

Validate your design

- ► Easy configuration and automatic control
- ► Flexible test execution
- Straightforward, configurable reports


Easy configuration and automatic control

R&S°ScopeSuite is a generic compliance test software that runs on the R&S°RTO6 oscilloscope or separate PC. It controls the measurement settings and test sequences on the oscilloscope and guides you through all the selected tests based on the test setup. Detailed instructions make it easy to correctly connect the oscilloscope and probes to the test fixture and DUT. User data, the test setup settings and measurement report definitions are easy to configure. The limit editor lets you individually adjust standard-specific test limits.


Straightforward, configurable reports

Documenting the measurement results is essential to compliance tests. R&S°ScopeSuite offers an extensive range of documentation functions. You can add measurement details and screenshots to the pass/fail results. Available output formats are PDF, DOC and HTML.

Flexible test execution

For debugging during development or stability tests, you can repeat single tests or a sequence of tests as often as required. Between single tests, you can change limit lines or other parameters for every test and compare their impact on the results. For documentation, R&S®ScopeSuite generates a test report from the selected test results.

Test fixture sets from Rohde & Schwarz

Rohde & Schwarz offers test fixture sets in line with the different interface standards to connect the measuring equipment and the DUT.

Compliance option	Included protocol
R&S®RTO6-K21	USB2.0
R&S®RTO6-K22	10M/100M/1G-BASE-T/EE Ethernet
R&S®RTO6-K23	2.5/5/10G-BASE-T Ethernet
R&S®RTO6-K24	100BASE-T1 Ethernet
R&S®RTO6-K26	MIPI D-PHY, C-PHY
R&S®RTO6-K81	PCIe 1.1/2.0 (up to 2.5 GT/s)
R&S®RTO6-K87	1000BASE-T1 Ethernet
R&S®RTO6-K88	MGBASE-T1
R&S®RTO6-K89	10BASE-T1 Ethernet
R&S®RTO6-K91	DDR3/DDR3L/LPDDR3
R&S®RTO6-K92	eMMC

SERIAL INTEGRITY ANALYSIS

Extensive debugging and analysis capabilities

- Powerful basic jitter analysis
- ► Deep system insights with jitter and noise decomposition
- Clock data recovery for analyzing embedded clock signals in real time
- ► Serial pattern trigger

Powerful basic jitter analysis functions

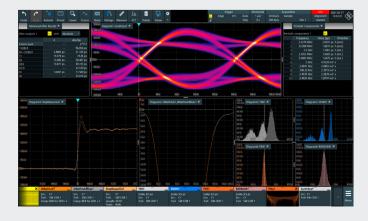
Get your jitter analysis of clock and data signals on track with automated jitter measurements for cycle-to-cycle jitter and time interval errors (TIE) and other tools like track, long-term trend and FFT. Frequency interference can be determined by applying FFT analysis to the cycle-to-cycle TIE jitter measurement track for example.

Jitter and noise measurement functions

R&S®RTO-K134	R&S®RTO-K134 option				
R&S®RTO-K133	option	TJ (meas.)	TN (meas.)		
R&S®RTO-K12 o	<u> </u>	TJ (at BER) RJ	EH (at BER) RN RN + OBUN		
Standard	cycle-to-cycle jitter	RJ + OBUJ	DN		
functions	N-cycle jitter	DJ	DDN		
Period	cycle-to-cycle width	DJ (δδ)	ISIN		
Frequency	cycle-cycle duty	DDJ	LD		
Setup	cycle	ISI	PN		
Setup/hold time	time interval error	DCD	DDN + PN		
Setup/hold ratio	data rate	PJ	OBUN		
	unit interval	DDJ + PJ	ΟΒυΝ (δδ)		
	skew delay	OBUJ			
	skew phase	ΟΒυͿ (δδ)			

Deep system insights with jitter and noise decomposition

Gain more insights into your transmitter interface by decomposing jitter and noise into random (RJ/RN) and deterministic components, such as data dependent (DDJ/DDN) and periodic (PJ/PN) or other bounded uncorrelated components (OBUJ/OBUN). Calculating step responses that fully characterize the deterministic behavior of a transmission system enable ccurate measurement results even for relatively short signal sequences. In addition, synthetic eye diagrams and BER bathtub curves provide deeper insight into overall system behavior, individual jitter. Noise components can be displayed in histogram, track and spectrum view.

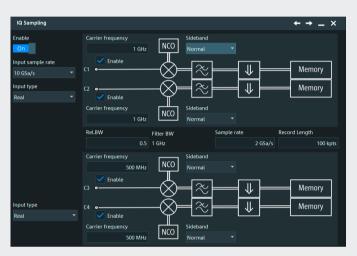


Serial pattern trigger

Combine the R&S®RTO6 with optional hardware-based clock data recovery or parallel clock signal to trigger on any serial interface data pattern of up to 16 byte with bit rates between 100 kbps and 2.5 Gbps. All analysis options are available.

Clock data recovery for analyzing embedded clock signals in real time

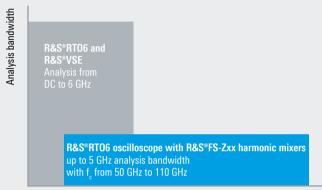
R&S®RTO6 oscilloscopes enable real-time clock data recovery of embedded clocks from serial interfaces thanks to their unique digital trigger architecture. As a result, eye and histogram measurements run continuously over a long period of time without any postprocessing. The hardware-based clock data recovery operates at the full acquisition rate without restricting oscilloscope functions. Furthermore, all automated jitter measurements can be performed on the recovered clock signal.


WIDEBAND RF AND SIGNAL ANALYSIS

Analyze I/Q data

- ► Real-time conversion of modulated signals to I/Q data
- ► Precise wideband RF signal analysis
- ► Advanced signal analysis

Real-time conversion of modulated signals to I/Q data


The I/Q interface of R&S°RTO6 oscilloscopes simplifies analysis of modulated signals by converting to I/Q data in real-time. The dedicated R&S°VSE vector signal explorer software or third-party tools such as MATLAB° support further I/Q data processing.

Multichannel RF signal analysis

R&S°RTO6 oscilloscopes enable multichannel wideband RF measurements up to 6 GHz. When combined with R&S°FS-Zxx harmonic mixers, RF carrier frequencies between 50 GHz and 110 GHz are supported with an analysis bandwidth of 5 GHz. With outstanding RF characteristics of –159 dBm (1 Hz) and 112 dB SNR, the R&S°RTO6 is qualified to accurately analyze RF signals.

RF analysis

RF frequency

Advanced signal analysis

The R&S®RTO6 lets you analyze complex signals such as OFDM, radar and 5G MIMO signals with the help of R&S®VSE vector signal explorer software. The software offers a wide range of analysis tools for a large variety of modulated signals, ranging from pulsed and analog modulated signals to generic I/Q signals along with wireless and mobile communications standards such as LTE, 5G NR and WLAN.

Advanced RF analysis capabilities with the R&S®RTO oscilloscope

LOGIC ANALYSIS

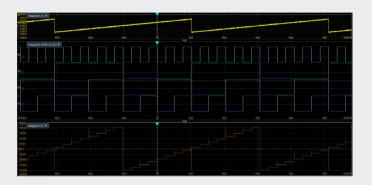
Enhance your mixed-signal analysis capabilities

- Mixed-signal option for logic analysis
- ► Additional 16 digital channels with no reduction of analog channels
- More signal details thanks to high time resolution over the entire memory depth
- ► Precise triggering on signal events
- ► Low test point loading from active probing

Enhanced analysis capabilities with mixed-signal option

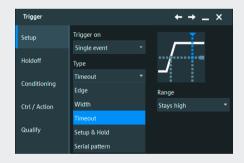
The unique R&S®RTO6 plug & play concept makes upgrading easy. The R&S®RTO6-B1 mixed-signal option (MSO) option adds 16 digital channels and is quick to install on site without opening the oscilloscope. Simply insert it into the slot on the rear panel and use all 16 digital channels of the MSO without losing any of the 4 analog input channels.

Straightforward display of digital signals


The R&S®RTO-B1 option supports 16 digital channels and simultaneous decoding of up to four parallel buses. Each bus is represented by an icon on the edge of the screen. The R&S®SmartGrid function lets you simply drag&drop icons onto the screen. The icons clearly show the current status of all activated logic channels (high, low, toggle) regardless of other oscilloscope settings.

Specifications: R&S®RT06-B1 MS0 option

- ▶ 16 digital channels (2 logic probes with 8 channels each)
- ► Max. 400 MHz signal frequency
- ► Max. 5 Gsample/s per channel sampling rate
- ► Max. 200 Msample per channel acquisition memory
- High input impedance: 100 kΩ
- ► Low input capacitance: 4 pF


High time resolution over the entire memory depth

With a sampling rate of 5 Gsample/s, the R&S°RTO6-B1 mixed signal option (MSO) provides a maximum time resolution of 200 ps for all digital channels. This sampling rate is available over the entire memory depth of 200 Msample per channel. As a result, the MSO option can detect critical events such as narrow or widely separated glitches.

Precise triggering on signal events

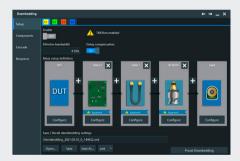
The R&S®RTO6-B1 option offers numerous triggers for debugging and analysis, such as edge, width, pattern and serial pattern. These triggers can be combined with holdoff conditions. Choose either individual digital channels or bus signals as trigger sources. The digital channel resolution of 200 ps makes these channels a precise trigger source.

Analysis of parallel and serial protocols with digital channels

Use digital channels to decode parallel buses. They are displayed in a digital bus format or as an analog waveform. For clocked parallel buses, the decoded contents can also be displayed in a table. You can also use the digital channels of the R&S®RTO-B1 option to decode serial interface protocols such as SPI and I²C.

SPECIALIZED SIGNAL ANALYSIS

Measurement options for in-depth measurements


- ► Realtime math for differential signals
- Deembedding for waveform correction
- Characterization and debugging of signal paths
- Differential pulse signal with configurable parameters

Realtime math for differential signals

The R&S®RTO6 features a math module directly before the trigger system. It supports add, subtract and common mode calculation for two input channels. This enables fast analysis of differential signals, including triggering on the differential or common mode voltage. The math module also allows inversion of input signals.

Deembedding

Transmission losses caused by the signal path can be corrected by activating the deembedding option. A cascade of signal path blocks can be defined here. The individual blocks are described by S-parameters that can be derived from simulation or measured with a vector network analyzer. The deembedding software automatically calculates the correction filter for the overall system response.

Differential pulse source with configurable parameters

The R&S®RTO6-B7 pulse source provides a highly symmetrical differential pulse signal with a steep rise time of 22 ps. The key pulse source parameters are user adjustable. The output level ranges from -50 mV to -200 mV and can be set in 10 mV steps. The pulse repetition rate and the duty cycle are programmable in the range of 5 Hz to 250 MHz and 10% to 90%. The pulse source can be locked to the R&S®RTO6 reference clock or set to free running mode to avoid deterministic conditions for certain test applications.

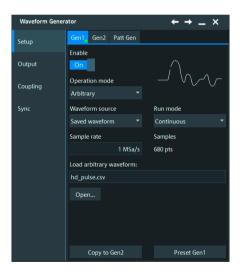
Time-domain reflection/transmission (TDR/TDT)

The TDR/TDT option of R&S®RTO6 oscilloscopes combines the R&S®RTO6-B7 pulse source and the analog input channels to obtain a time-domain reflection (TDR) and transmission (TDT) analysis system. It supports the characterization and debugging of signal paths, including PCB traces, cables and connectors with both, single-ended and differential measurements. A setup wizard guides the user through setup, calibration and analysis. The resulting waveforms are displayed as impedance or reflection coefficients versus time or distance. In addition, all oscilloscope analysis tools such as cursor and automated measurements can be used.

Differential pulse source	Value range
Analog bandwidth, rise time	> 16.5 GHz, 22 ps
Skew	< 0.5 ps
Output low level	-200 mV to -50 mV, 10 mV steps
Repetition rate	
Locked	5/10/20/50/100/200/500 Hz, 1/5/10/25/50/100/250 MHz
Free running	5/10/20/50/100/200/500 Hz, 1/5/10/25/50 MHz
Duty cycle	
Repetition rate < 5 MHz	10% to 90%, 10% steps
Repetition rate > 5 MHz	50% (const.)
Clock mode	locked, unlocked/free running

Application as DUT stimulus or deskewing

The R&S®RTO6-B7 can be easily set up as a stimulus for a DUT. For example, as a precise clock or as a pulse input with a fast rise time for testing receiver characteristics with TDR/TDT measurements. With an output skew of < 0.5 ps, the R&S®RTO6-B7 also provides an accurate source for deskewing measurement setups with multiple channels. Thanks to its differential nature, the R&S®RTO6-B7 is ideal for deskewing cables and probes for differential measurements.


COMPACT AND CONFIGURABLE

WAVEFORM GENERATION

- ► Comes with a two-channel 100 MHz arbitrary waveform generator
- ► Single-ended and differential interface stimulation
- ► Test your device with native signals

100 MHz arbitrary waveform generator

The R&S®RTO6 oscilloscopes are the first in this class to offer a fully integrated two-channel 100 MHz function generator, arbitrary waveform generator and eight-channel pattern generator. With 500 Msample/s and 14 bit resolution, the generator can be used for education purposes as well as design and R&D. The integrated generator saves space on the test bench and provides both standard and arbitrary stimulus to the DUT. The generator can be operated as a pattern, function or modulation generator. It also supports sweep mode and the playback of arbitrary waveform files.

Specifications: R&S®RTO-B6 option ► Analog output: 2 channels ► Bandwidth: 100 MHz ► Sampling rate: 500 Msample/s ► Operating modes: Function generator (sine, square, ramp, DC, pulse, cardinal sine, cardiac, Gauss, Lorentz, exponential rise/fall) ► Modulation generator (AM, FM, FSK) ► Sweep generator ► Arbitrary waveform generator ► Pattern generator: 8 channels ► Memory: 40 Msample per channel ► Resolution: 14 bit

Single-ended and differential interface stimulation

The generators can be coupled and offset from each other when testing differential devices. With the ability to offset amplitude and phase in coupled mode, you can simulate both ideal and non-ideal conditions. Differential devices, such as differential amplifiers or I/Q mixers, can be tested against amplitude impairments and phase imbalances.

Test your device with native signals

Testing your device with real-world signals opens up a new method for testing the limits of your design. The R&S®RTO6-B6 arbitrary waveform generator lets you play back waveforms captured on the oscilloscope. The captured waveforms can be manipulated by changing the amplitude and offset level or be superimposed with noise to evaluate a device against design criteria.

Fully automated compliance tests

Compliance tests can be fully automated with the R&S®RTO6-B6 arbitrary waveform generator, eliminating the need for an external signal source. R&S®ScopeSuite can control the waveform generator and provide the disturbing signal needed for Ethernet compliance testing, making the R&S®RTO6 the most compact compliance test solution on the market.

ACCESSORIES

Safe transport and easy rack mounting

An extensive selection of storage and transportation accessories means R&S®RTO6 oscilloscopes are always fully protected and easy to transport. The rackmount kit allows easy installation of the oscilloscope in integrated environments. Active, passive and logic probes can be stored in a special pouch on the rear panel of the R&S®RTO6 for easy accessibility.

Accessories	
Front cover	R&S®RTO6-Z1
Soft carrying case	R&S®RTO6-Z3
Transit case, with trolley function	R&S®RTO6-Z4
19" rackmount kit	R&S®ZZA-RTO6

EXTENSIVE PROBE PORTFOLIO

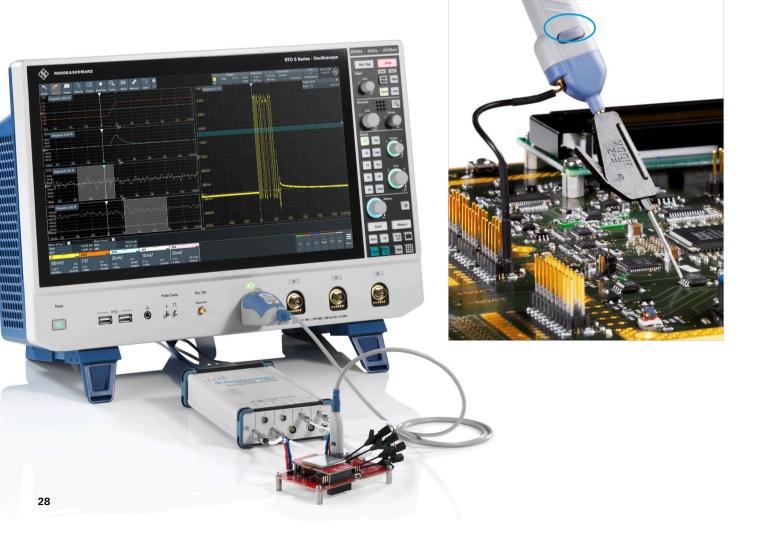
THE RIGHT PROBE FOR THE BEST MEASUREMENT

- ► Extensive probe range for all measurement tasks
- ► Micro button for convenient instrument control
- ► R&S®ProbeMeter: integrated voltmeter with 0.1% measurement uncertainty for precise DC measurements
- Comprehensive accessories for maximum flexibility during contacting

Extensive probe range for all measurement tasks

A complete portfolio of high-quality passive and active probes covers all measurement tasks. With an input impedance of 1 M Ω , the active probes put only a minimum load on a signal source operating point. The very large dynamic range, even at high frequencies, prevents signal distortion – for example: 60 V (V $_{pp}$) at 1 GHz for the active single-ended probes.

Multi-channel power probes


The R&S®RT-ZVC multi-channel power probe offers up to four voltage and four current channels with 18 bit resolution for high dynamic range measurements. With up to two R&S®RT-ZVC probes supported by an R&S®RTO6 oscilloscope, you can analyze eight high dynamic range voltage and eight high dynamic range current signals synchronized with signals captured by the oscilloscope inputs.

Micro button for convenient instrument control

The situation is all too familiar: you have carefully positioned the probe on the DUT and want to start measurements but no free hand. The micro button on Rohde & Schwarz active probes solves the problem. It is conveniently situated on the probe tip, and you can assign it different functions, such as run/stop, autoset and adjust offset.

R&S®ProbeMeter: integrated voltmeter for precise DC measurements

One connection lets you see the oscilloscope waveform and gives you access to a highly accurate voltmeter that shows the DC value regardless of other instrument settings.

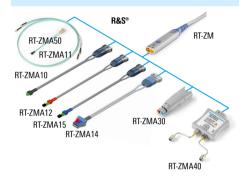
Rohde & Schwarz offers a comprehensive probe portfolio meet every probing need.

Standard passive probes 38 MHz to 500 MHz

R&S°RT-ZP10, R&S°RT-ZP1x, R&S°RT-ZP03S

Passive probes are standard accessories for Rohde & Schwarz oscilloscopes. They are lowcost, general purpose probing solutions for a broad range of applications.

Single ended broadband probes 1 GHz to 6 GHz


R&S°RT-ZS10L, R&S°RT-ZS10E, R&S°RT-ZS10, R&S°RT-ZS20, R&S°RT-ZS20, R&S°RT-ZS20, R&S°RT-ZS60

A particularly wide dynamic range, exceptionally low offset and gain errors and the right accessories make these probes the ideal accessory for Rohde&Schwarz oscilloscopes.

Differential broadband probes 200 MHz to 4.5 GHz

R&S°RT-ZD02, R&S°RT-ZD08, R&S°RT-ZD10, R&S°RT-ZD20, R&S°RT-ZD40,

A flat frequency response and a high input impedance with low input capacitance permit precise measurements on differential signals while keeping the DUT load low. The high common mode rejection over the entire probe bandwidth ensures high immunity to interference. Special browser adapters allow flexible contacting with high signal fidelity.

Modular broadband probes 1.5 GHz to 16 GHz

R&S°RT-ZM15, R&S°RT-ZM30, R&S°RT-ZM60, R&S°RT-ZM90, R&S°RT-ZM130, R&S°RT-ZM160

The R&S°RT-ZM modular probe system delivers high performance in combination with flexible and configurable connectivity. The system includes probe tip modules for various measurement tasks and conditions.

Power rail probes 2 GHz and 4 GHz

R&S®RT-ZPR20, R&S®RT-ZPR40

High bandwidth, high sensitivity, very low noise and extra-large offset compensation make the R&S®RT-ZPR power rail probes an excellent tool for characterizing power rails. An integrated high accuracy DC voltmeter provides instantaneous DC voltage readout.

High voltage probes 25 MHz to 400 MHz; ±700 V to ±6000 V

R&S°RT-ZH03, R&S°RT-ZH10, R&S°RT-ZH11, R&S°RT-ZD002 R&S°RT-ZD003, R&S°RT-ZD01, R&S°RT-ZHD07, R&S°RT-ZHD15, R&S°RT-ZHD16, R&S°RT-ZHD60

The Rohde & Schwarz portfolio of high voltage probes includes passive single-ended and active differential probes for voltages up to 6000 V (peak). Different models allow measurements up to CAT IV environments. Differential probes provide an exceptional common mode rejection ratio over a broad frequency range.

Current probes 20 kHz to 120 MHz

R&S°RT-ZC02, R&S°RT-ZC03, R&S°RT-ZC05B, R&S°RT-ZC10 R&S°RT-ZC10B, R&S°RT-ZC15B, R&S°RT-ZC20, R&S°RT-ZC20B,

R&S®RT-ZC030, R&S®RT-ZC31

Rohde & Schwarz current probes enable accurate, non-intrusive measurement of DC and AC currents. Different models are available to measure currents in the range of 1 mA to 2000 A with a maximum bandwidth of up to 120 MHz. Current probes are available with Rohde & Schwarz probe interface or BNC with external power supply

Multi-channel power probes 1 MHz

R&S®RT-ZVC02, R&S®RT-ZVC02

Multi-channel power probe with 2 (or 4) voltage and 2 (or 4) current channels with 18 bit resolution. Up to two R&S*RT-ZVC probes are supported on an R&S*RTO6 oscilloscope. Capture eight voltage and eight current signals synchronized with the four oscilloscope channels.

EMC near-field probes 2 GHz and 4 GHz

R&S°HZ-14, R&S°HZ-15, R&S°HZ-17

Powerful E and H near-field probes for the frequency range from 9 kHz to 3 GHz with optional preamplifier expand the application range of the R&S*RTO6 oscilloscope series to include EMI debugging.

FUTURE-PROOF YOUR INSTRUMENT

AN OSCILLSCOPE THAT EVOLVES WITH YOUR NEEDS

- ► After-purchase bandwidth upgrades
- ► Regular firmware improvements
- Software options that support future technologies
- No hidden subscription fees
- Flexible hardware options

Easy bandwidth upgrades for faster signals

Upgrading the bandwidth of an R&S®RTO6 oscilloscope to 1 GHz, 2 GHz or 3 GHz is possible without sending in the instrument to be serviced. Bandwidth upgrades to 4 GHz or 6 GHz benefit from a complete check of the instrument and calibration at a Rohde & Schwarz service center.

Firmware updates

Regular firmware updates consistently add new basic functions to R&S®RTO6 oscilloscopes. Download the latest firmware version at www.rohde-schwarz.com and use a USB storage device or LAN connection for installation. Your R&S®RTO6 oscilloscope is always up-to-date.

Application-specific software options

Unlocking comprehensive software options on R&S®RTO6 oscilloscopes enables the highly-specialized measurements required by state-of-the-art technologies. The constantly growing portfolio of new software options can cover your future test needs – even after purchasing the instrument:

- ► Triggering and decoding of serial protocols
- ► Automatic compliance tests on fast interfaces
- ▶ Detailed options for jitter analysis and power analysis
- ► Spectrum, power and signal analysis

On-site configuration of hardware options

The plug & play hardware concept enables R&S®RTO6 oscilloscopes to easily adapt to new requirements. Quick installation without opening the instrument is supported for all hardware options, such as digital channels for logic analysis or the waveform generator. This approach has many advantages:

- ► Straightforward extensibility for future tasks
- ► On-site installation of options in minutes
- ► No need to align or recalibrate after installing options

Exchangeable solid-state disk

No tools are needed to exchange the R&S®RTO6 solidstate drive, keeping confidential data protected at all times.

Rear view

SPECIFICATIONS OF BASE UNIT

Vertical system		
Input channels		4 channels
Input impedance		50 Ω ± 2.5% 50 Ω ± 1.5% (typ.),
Analog bandwidth (–3 dB)	at 50 Ω input impedance	1 M Ω ± 1% 15 pF (meas.)
Allalog balldwidth (–5 db)	R&S°RTO6-B90 option	≥ 600 MHz
	R&S®RTO6-B91 option	≥ 1 GHz
	R&S®RTO6-B92 option	≥ 2 GHz
	R&S®RTO6-B93 option	≥ 3 GHz
	R&S®RTO6-B94 option	≥ 4 GHz
	· ·	\geq 6 GHz on 2 channels,
	R&S®RTO6-B96 option	≥ 4 GHz on 4 channels
	at 1 $M\Omega$ input impedance	≥ 500 MHz (meas.)
Bandwidth limit filters		brick wall (noise optimized),
	15 10 1 10	Gaussian (step-response optimized)
Analog bandwidth limits	max. –1.5 dB, min. –4 dB	200 MHz, 20 MHz
Rise time/fall time	10% to 90% at 50 Ω, bandwidth limit brick	
	R&S®RTO6-B90 option	635 ps
	R&S®RTO6-B91 option	375 ps
	R&S®RTO6-B92 option	210 ps
	R&S®RTO6-B93 option	145 ps
	R&S®RTO6-B94 option	110 ps
	R&S®RTO6-B96 option	77 ps
Input VSWR	input frequency	R&S°RTO6-B90, R&S°RTO6-B91, R&S°RTO6-B92 R&S°RTO6-B93, R&S°RTO6-B94 options
	≤ 2 GHz	1.25 (meas.)
	> 2 GHz	1.4 (meas.)
	input frequency	R&S®RTO6-B96 option
	≤ 2 GHz	1.25 (meas.)
	> 2 GHz to ≤ 4 GHz	1.6 (meas.)
	> 4 GHz	2.0 (meas.)
Vertical resolution		16 bit system architecture
Effective number of bits (ENOB) at 50	Ω , 50 mV/div, 10 MHz input signal with 90% full scale (n	
Bandwidth		ENOB
50 MHz		9.4
100 MHz		9
200 MHz		8.6
300 MHz		8.2
500 MHz		8.1
1 GHz		7.7
2 GHz		7.1
4 GHz		6
6 GHz		6.1
DC gain accuracy	offset and position set to 0 V, after self-align	
	at 50 Ω , input sensitivity > 5 mV/div	±1.5%
	at 50 Ω , input sensitivity \leq 5 mV/div	±2%
	at 1 MΩ	±2%
Input coupling	at 50 Ω	DC, GND
	at 1 MΩ	DC, AC (> 7 Hz), GND
Input sensitivity	at 50 Ω	1 mV/div to 1 V/div, entire analog bandwidth supported for all input sensitivities
	at 1 $M\Omega$	1 mV/div to 10 V/div, entire analog bandwidth supported for all input sensitivities

Maximum input voltage at 50 Ω 5 V (RMS) at 1 MΩ 150 V (RMS), 200 V (V _s), derates at 20 dB/decade to 5 V (RMS) above 250 kHz 4 at 1 MΩ with R&S*RT-ZP10 passive probe 400 V (RMS), 1650 V (V _s), 300 V (RMS) CAT If for derating and details see data sheet R&S*RT-Zxx Standard Probes, PD 3607.3851.22 ±5 div Position range ±5 div Offset range at 50 Ω input sensitivity ±10 V ≥ 316 mV/div to ≤ 10 v/div ±10 V ≥ 1 mV/div to ≤ 316 mV/div ±1 V Offset range at 1 MΩ input sensitivity ≥ 1 V/div to ≤ 3.16 V/div to ≤ 10 V/div ±(115 V − input sensitivity x 5 div) ≥ 1 V/div to ≤ 3.16 V/div to ≤ 3.16 V/div ±(11.5 V − input sensitivity x 5 div) ≥ 100 mV/div to ≤ 316 mV/div ±10 V ≥ 31.6 mV/div to ≤ 31.6 mV/div ±10 V ≥ 31.6 mV/div to ≤ 31.6 mV/div ±1.15 V − input sensitivity x 5 div) ± 1 v ±0 v/div to ≤ 31.6 mV/div ±1.0 V Offset accuracy after adequate suppression of measurement noise using high-resolution sampling mode, waveform averaging or a combination of both ±1 C gain accuracy x reading − net offset + (2.5 mV + 0.1 div x input sensitivity) Channel-to-channel isolation (each channel at same input sensitivity) input frequency within instrument bandwidth ±1 C G gain accuracy x readin	Vertical system			
MΩ MΩ MΩ MΩ MRS*FIT ZP10 passive probe E60 Art MΩ MRSMS, 1650 V (Z, 300 V (RMS), CR3 II No. 200 V (RMS), 1650 V (Z), 300 V	Maximum input voltage	at 50 Ω	5 V (RMS)	
# 1 MO with R85*RTZP10 passive probe R85*RTZX Standard Probes, PD 3807.381.12 Position range		at 1 MΩ	derates at 20 dB/decade	
Offset range at 50 Q input sensitivity ±10 V > 100 m/V/div to ≤ 100 m/V/div ±1 V Colspan="4">Ag V 0 0 m/V/div to ≤ 100 m/V/div ±1 V Colspan="4">		at 1 MΩ with R&S®RT-ZP10 passive probe	for derating and details	see data sheet
\$ 316 mV/div to ≤ 1 V/div \$ 10 V/div \$ 1 V/div \$ 10 V/	Position range		±5 div	
2 100 mV/div to ≤ 316 mV/div 2 3 V 1 m W/div to ≤ 100 mV/div 2 1 V 2 115 V - input sensitivity × 5 div) 3 10 W/div to ≤ 31.6 W/div 4 110 V 3 316 m W/div to ≤ 31.6 W/div 4 110 V 3 316 m W/div to ≤ 31.6 W/div 4 110 V 3 316 m W/div to ≤ 31.6 W/div 4 110 V 3 316 m W/div to ≤ 31.6 m W/div 4 110 V 3 316 m W/div to ≤ 31.6 m W/div 4 110 V 3 316 m W/div to ≤ 31.6 m W/div 4 110 V 3 316 m W/div to ≤ 31.6 m W/div 4 110 V 4 10 5 5 m + 10 1 div x input sensitivity × 5 div) 4 1 m W/div to ≤ 31.6 m W/div 4 110 V 4 10 5 m + 10 1 div x input sensitivity × 5 div) 5 1 m W/div to ≤ 31.6 m W/div 4 110 V 6 1 m W/div to ≤ 31.6 m W/div 4 110 V 6 1 m W/div to ≤ 31.6 m W/div 4 110 V 6 1 m W/div to ≤ 31.6 m W/div 4 110 V 7 m W/div to ≤ 31.6 m W/div 4 110 V 8 m W = 10 m W/div 4 110 V 9 m W = 10 m W/div 4 110 V 9 m W = 10 m W/div 4 110 V 1 m W/div to ≤ 31.6 m W/div 4 10 W 1 m W/div to ≤ 31.6 m W/div 4 10 M 1 m W/div to ≤ 31.6 m W/div to ≤ 31.6 m W/div 1 m W/div to ≤	Offset range at $50~\Omega$	input sensitivity		
1 mV/div to ≤ 100 mV/div 100 mV/div 110 mV/div		> 316 mV/div to ≤ 1 V/div	±10 V	
Offset range at 1 MΩ input sensitivity ± (115 V − input sensitivity × 5 div) > 3.16 V/div to ≤ 3.16 V/div ± 100 V > 3.16 mV/div to ≤ 1 V/div ± (11.5 V − input sensitivity × 5 div) > 100 mV/div to ≤ 31.6 mV/div ± 10 V > 3.16 mV/div to ≤ 31.6 mV/div ± (1.5 V − input sensitivity × 5 div) ± 10 V ± 10 V ≥ 3.16 mV/div to ≤ 31.6 mV/div ± (1.5 V − input sensitivity × 5 div) ± 10 V ± (1.5 V − input sensitivity) ± 0.35% × net offset ± 0 V ± 0.25 mV + 0.1 div × input sensitivity) ± 0 V ± 0.25 mV + 0.1 div × input sensitivity) ± 1 V ± 0.25 mV + 0.1 div × input sensitivity) ± 0 V ± 0.25 m + 0.1 div × input sensitivity) ± (1.5 V − input sensitivity) ± 0.25 m + 0.1 div × input sensitivity ± 0 V ± 0.25 m + 0.1 div × input sensitivity ± 0 V ± 0.25 m + 0.1 div × input sensitivity ± (1.5 V − input sensitivity) ± 0.25 m + 0.1 div × input sensitivity ± 0 V ± 0.25 m + 0.1 div × input sensitivity ± (1.5 V − input sensitivity) ± 0.25 m + 0.		> 100 mV/div to ≤ 316 mV/div	±3 V	
\$3.16 V/div to ≤ 3.16 V/div \$1.00 V/div \$1.00 V \$1.00 V		1 mV/div to ≤ 100 mV/div	±1 V	
> 1 V/div to ≤ 3.16 V/div 210 V 11.5 V - input sensitivity × 5 div)	Offset range at 1 $M\Omega$	input sensitivity		
\$ 316 mV/div to ≤ 1 V/div ±(11.5 V - input sensitivity × 5 div) \$ 100 mV/div to ≤ 106 mV/div ±(10 V - input sensitivity × 5 div) \$ 1 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity × 5 div) \$ 1 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity × 5 div) \$ 1 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity × 5 div) \$ 2 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity × 5 div) \$ 4 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity × 5 div) \$ 4 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity × 5 div) \$ 4 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity × 5 div) \$ 4 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity) \$ 4 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity) \$ 4 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity) \$ 4 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity) \$ 4 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity) \$ 4 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity) \$ 4 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity) \$ 4 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity) \$ 4 mV/div to ≤ 31.6 mV/div ±(1.15 V - input sensitivity) \$ 4 mV/div to ≤ 4 GHz		> 3.16 V/div to ≤ 10 V/div	±(115 V – input sensitiv	ity × 5 div)
> 100 mV/div to ≤ 316 mV/div to 100 mV/div to 110 V + 1.15 V - input sensitivity × 5 div)		> 1 V/div to ≤ 3.16 V/div		
\$ 100 mV/div to \$ 316 mV/div to \$ 100 mV/div to \$ 1.00 mV/div \$ 1.00 mV \$ 1.00 mV \$ 1.00 mV/div \$ 1.00 mV/		> 316 mV/div to ≤ 1 V/div	±(11.5 V – input sensitiv	rity × 5 div)
1 mV/div to ≤ 31.6 mV/div ±1 V ±10.35 % × net offset + 2.5 mV + 0.1 div × input sensitivity (net offset = offset – position × input sensitivity) (net offset = offset – position × input sensitivity) (net offset = offset – position × input sensitivity) (net offset = offset – position × input sensitivity) (net offset = offset – p		> 100 mV/div to ≤ 316 mV/div		,
Offset accuracy ± 1 V Offset accuracy after adequate suppression of measurement noise using high-resolution sampling mode waveform averaging or a combination of both same input sensitivity) ± (DC gain accuracy x reading - net offset + 2.5 mV + 0.1 div x input sensitivity) Channel-to-channel isolation (each channel at same input sensitivity) input frequency within instrument bandwidth ± (DC gain accuracy x reading - net offset + offset accuracy) Channel-to-channel isolation (each channel at same input sensitivity) ≤ 2 GHz > 60 dB > 2 GHz > 2 GHz > 50 dB > 4 GHz to ≤ 4 GHz > 50 dB RMS noise floor at 50 Ω (typ.) input sensitivity R8S°RT06-B90 option R8S°RT06-B91 option (bandwidth limit brick wall) 1 mV/div 0.06 mV 0.09 mV 1 mV/div 0.07 mV 0.09 mV 2 mV/div 0.10 mV 0.20 mV 1 m mV/div 0.10 mV 0.20 mV 2 m mV/div 0.32 mV 0.37 mV 2 m mV/div 0.26 mV 1.79 mV 2 m mV/div 0.20 mV 1.79 mV 2 m mV/div 0.13 mV 0.16 mV 1 m mV/div 0.13 mV <t< td=""><td></td><td>> 31.6 mV/div to ≤ 100 mV/div</td><td>±(1.15 V – input sensitiv</td><td>vitv × 5 div)</td></t<>		> 31.6 mV/div to ≤ 100 mV/div	±(1.15 V – input sensitiv	vitv × 5 div)
2.5 mV + 0.1 div x input sensitivity 2.5 mV + 0.1 d				,,
DC measurement accuracy noise using high-resolution sampling mode, waveform averaging or a combination of both Channel-to-channel isolation (each channel at same input sensitivity) 2 GHz	Offset accuracy		$\pm (0.35\% \times \text{net offset} + 2.5 \text{ mV} + 0.1 \text{ div} \times \text{input sensitivity})$	
Channel-to-channel isolation (each channel at same input sensitivity) input frequency within instrument bandwidth ≤ 2 GHz > 60 dB > 2 GHz to ≤ 4 GHz > 50 dB RMS noise floor at 50 Ω (typ.) (bandwidth limit brick wall) input sensitivity R&S*RT06-890 option R&S*RT06-891 option 1 mV/div 0.06 mV 0.09 mV 2 mV/div 0.07 mV 0.09 mV 1 mV/div 0.10 mV 0.12 mV 1 mV/div 0.10 mV 0.20 mV 2 m W/div 0.32 mV 0.37 mV 2 m W/div 0.36 mV 0.93 mV 1 m W/div 0.60 mV 1.79 mV 2 m W/div 0.32 mV 0.37 mV 2 m W/div 0.36 mV 0.93 mV 1 m W/div 0.26 mV 0.37 mV 2 m W/div 1.60 mV 1.79 mV 1 m W/div 2.87 mV 3.53 mV 1 m W/div 1.09 mV 17.2 mV 1 m W/div 0.13 mV 0.16 mV 2 m W/div 0.13 mV 0.16 mV 2 m W/div 0.16 mV 0.20 mV	DC measurement accuracy	noise using high-resolution sampling mode,		
> 2 GHz to ≤ 4 GHz > 50 dB > 4 GHz > 40 dB > 4 GHz to ≤ 6 GHz > 40 dB	Channel-to-channel isolation (each channel at same input sensitivity)			
S 4 GHz to ≤ 6 GHz S 4 GHz to ≤ 6 GHz to ≤ 6 GHz S 4 GHz to ≤ 6 GHz to ≤		≤ 2 GHz	> 60 dB	
RMS noise floor at 50 Ω (typ.) (bandwidth limit brick wall) input sensitivity R&S*RT06-B90 option R&S*RT06-B91 option 1 mV/div 0.06 mV 0.09 mV 2 mV/div 0.07 mV 0.09 mV 5 mV/div 0.10 mV 0.12 mV 10 mV/div 0.17 mV 0.20 mV 20 mV/div 0.32 mV 0.37 mV 50 mV/div 0.86 mV 0.93 mV 100 mV/div 1.60 mV 1.79 mV 200 mV/div 2.87 mV 3.53 mV 500 mV/div 6.20 mV 8.76 mV 1 V/div 10.9 mV 17.2 mV input sensitivity R&S*RT06-B92 option R&S*RT06-B93 option 1 mV/div 0.13 mV 0.16 mV 2 mV/div 0.13 mV 0.17 mV 5 mV/div 0.16 mV 0.20 mV 5 mV/div 0.26 mV 0.32 mV 20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.07 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV </td <td></td> <td>> 2 GHz to ≤ 4 GHz</td> <td>> 50 dB</td> <td></td>		> 2 GHz to ≤ 4 GHz	> 50 dB	
1 mV/div 0.06 mV 0.09 mV 2 mV/div 0.10 mV 0.12 mV 0.12 mV 0.12 mV 0.12 mV 0.15 mV/div 0.17 mV 0.20 mV		> 4 GHz to ≤ 6 GHz	> 40 dB	
2 mV/div	RMS noise floor at 50 Ω (typ.) (bandwidth limit brick wall)		·	·
5 mV/div 0.10 mV 0.12 mV 10 mV/div 0.17 mV 0.20 mV 20 mV/div 0.32 mV 0.37 mV 50 mV/div 0.86 mV 0.93 mV 100 mV/div 1.60 mV 1.79 mV 200 mV/div 2.87 mV 3.53 mV 500 mV/div 6.20 mV 8.76 mV 1 V/div 10.9 mV 17.2 mV input sensitivity R&S*RTO6-B92 option R&S*RTO6-B93 option 1 mV/div 0.13 mV 0.16 mV 2 mV/div 0.13 mV 0.17 mV 5 mV/div 0.16 mV 0.20 mV 10 mV/div 0.26 mV 0.32 mV 20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV				
10 mV/div		2 mV/div	0.07 mV	0.09 mV
20 mV/div 0.32 mV 0.37 mV 50 mV/div 0.86 mV 0.93 mV 100 mV/div 1.60 mV 1.79 mV 200 mV/div 2.87 mV 3.53 mV 500 mV/div 6.20 mV 8.76 mV 1 V/div 10.9 mV 17.2 mV input sensitivity R8S*RTO6-B92 option R8S*RTO6-B93 option 1 mV/div 0.13 mV 0.16 mV 2 mV/div 0.13 mV 0.17 mV 5 mV/div 0.16 mV 0.20 mV 10 mV/div 0.26 mV 0.32 mV 20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		5 mV/div	0.10 mV	0.12 mV
50 mV/div 0.86 mV 0.93 mV 100 mV/div 1.60 mV 1.79 mV 200 mV/div 2.87 mV 3.53 mV 500 mV/div 6.20 mV 8.76 mV 1 V/div 10.9 mV 17.2 mV input sensitivity R&S*RTO6-B92 option R&S*RTO6-B93 option 1 mV/div 0.13 mV 0.16 mV 2 mV/div 0.13 mV 0.17 mV 5 mV/div 0.16 mV 0.20 mV 10 mV/div 0.26 mV 0.32 mV 20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		10 mV/div	0.17 mV	0.20 mV
100 mV/div 1.60 mV 1.79 mV 200 mV/div 2.87 mV 3.53 mV 500 mV/div 6.20 mV 8.76 mV 1 V/div 10.9 mV 17.2 mV input sensitivity R&S*RTO6-B92 option R&S*RTO6-B93 option 1 mV/div 0.13 mV 0.16 mV 2 mV/div 0.13 mV 0.17 mV 5 mV/div 0.16 mV 0.20 mV 10 mV/div 0.26 mV 0.32 mV 20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		20 mV/div	0.32 mV	0.37 mV
200 mV/div 2.87 mV 3.53 mV 500 mV/div 6.20 mV 8.76 mV 1 V/div 10.9 mV 17.2 mV input sensitivity R&S*RTO6-B92 option R&S*RTO6-B93 option 1 mV/div 0.13 mV 0.16 mV 2 mV/div 0.13 mV 0.17 mV 5 mV/div 0.16 mV 0.20 mV 10 mV/div 0.26 mV 0.32 mV 20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		50 mV/div		
500 mV/div 6.20 mV 8.76 mV 1 V/div 10.9 mV 17.2 mV input sensitivity R&S°RTO6-B92 option R&S°RTO6-B93 option 1 mV/div 0.13 mV 0.16 mV 2 mV/div 0.13 mV 0.17 mV 5 mV/div 0.16 mV 0.20 mV 10 mV/div 0.26 mV 0.32 mV 20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		100 mV/div	1.60 mV	1.79 mV
1 V/div 10.9 mV 17.2 mV input sensitivity R&S*RTO6-B92 option R&S*RTO6-B93 option 1 mV/div 0.13 mV 0.16 mV 2 mV/div 0.13 mV 0.17 mV 5 mV/div 0.16 mV 0.20 mV 10 mV/div 0.26 mV 0.32 mV 20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		200 mV/div	2.87 mV	3.53 mV
input sensitivity R&S*RTO6-B92 option R&S*RTO6-B93 option 1 mV/div 0.13 mV 0.16 mV 2 mV/div 0.13 mV 0.17 mV 5 mV/div 0.16 mV 0.20 mV 10 mV/div 0.26 mV 0.32 mV 20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		500 mV/div	6.20 mV	8.76 mV
1 mV/div 0.13 mV 0.16 mV 2 mV/div 0.13 mV 0.17 mV 5 mV/div 0.16 mV 0.20 mV 10 mV/div 0.26 mV 0.32 mV 20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		1 V/div	10.9 mV	17.2 mV
2 mV/div 0.13 mV 0.17 mV 5 mV/div 0.16 mV 0.20 mV 10 mV/div 0.26 mV 0.32 mV 20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		input sensitivity	R&S®RTO6-B92 option	R&S®RTO6-B93 option
5 mV/div 0.16 mV 0.20 mV 10 mV/div 0.26 mV 0.32 mV 20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		1 mV/div	0.13 mV	0.16 mV
10 mV/div 0.26 mV 0.32 mV 20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		2 mV/div	0.13 mV	0.17 mV
20 mV/div 0.49 mV 0.59 mV 50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		5 mV/div	0.16 mV	0.20 mV
50 mV/div 1.18 mV 1.43 mV 100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		10 mV/div	0.26 mV	0.32 mV
100 mV/div 2.37 mV 2.85 mV 200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		20 mV/div	0.49 mV	0.59 mV
200 mV/div 4.68 mV 5.67 mV 500 mV/div 12.1 mV 14.4 mV		50 mV/div	1.18 mV	1.43 mV
500 mV/div 12.1 mV 14.4 mV		100 mV/div	2.37 mV	2.85 mV
		200 mV/div	4.68 mV	5.67 mV
1 V/div 24.1 mV 28.8 mV		500 mV/div	12.1 mV	14.4 mV
		1 V/div	24.1 mV	28.8 mV

1 mV/div	Vertical system				
2 mV/div 0.22 mV 0.33 mV 0.47 mV 0.26 mV 0.34 mV 10 mV/div 0.26 mV 0.37 mV 0.47 mV 0.80 mV 0.72 mV 0.80 mV 0.72 mV 0.80 mV 1.75 mV 1.90 mV 100 mV/div 3.40 mV 3.55 mV 1.90 mV/div 3.40 mV 3.55 mV 6.95 mV 7.20 mV 150 mV/div 3.69 mV 7.20 mV 18.9 mV 17.9 mV 18.9 mV 11.00 mV/div 35.6 mV 37.3 mV 11.00 mV/div 10.13 mV 10 mV/div 10.13 mV 10 mV/div 10.13 mV 10 mV/div 10.13 mV 10 mV/div 10.15 mV 10 mV/div 11.5 mV 10 mV/div 10.0 mV/div		input sensitivity		R&S®RTO6-B94 option	R&S®RTO6-B96 option
5 mV/div 0.26 mV 0.34 mV 0.47 mV 0.39 mV 0.47 mV 0.80 mV 0.47 mV 0.80 mV 0.72 mV 0.80 mV 0.72 mV 0.80 mV 0.72 mV 0.80 mV 0.75 mV 0.90 mV 0.		1 mV/div		0.22 mV	0.33 mV
10 mV/div 0.39 mV 0.47 mV 0.80 mV 0.72 mV 0.80 mV 0.72 mV 0.80 mV 0.72 mV 0.80 mV 0.72 mV 0.80 mV 0.80 mV 0.72 mV 0.80 mV 0		2 mV/div		0.22 mV	0.33 mV
20 mV/div 0.72 mV 0.80 mV 50 mV/div 1.75 mV 1.90 mV 1.90 mV 1.90 mV 1.90 mV 1.90 mV 1.90 mV 3.40 mV 3.55 mV 2.00 mV/div 6.95 mV 7.20 mV 18.9 mV 1.75 mV 1.89 mV 1.75 mV 1.89 mV 35.6 mV 37.3 mV 1.75 mV 1.89 mV 35.6 mV 37.3 mV 1.75		5 mV/div		0.26 mV	0.34 mV
50 mV/div 1.75 mV 1.90 mV 1.90 mV 1.00 mV/div 3.40 mV 3.55 mV 2.00 mV/div 6.95 mV 7.20 mV 5.00 mV/div 17.9 mV 18.9 mV 1.75 mV 18.9 mV 1.75 mV 18.9 mV 1.75 mV		10 mV/div		0.39 mV	0.47 mV
100 mV/div 3.40 mV 3.55 mV 200 mV/div 6.95 mV 7.20 mV 500 mV/div 17.9 mV 18.9 mV 3.56 mV 37.3 mV 1 MO (meas.) 1 mV/div 0.13 mV 1 mV/div 0.13 mV 1 mV/div 0.13 mV 1 mV/div 0.17 mV 1 mV/div 0.17 mV 1 mV/div 0.17 mV 1 mV/div 0.26 mV 1 mV/div 0.47 mV 1 mV/div 0.49 mV 1 mV/div		20 mV/div		0.72 mV	0.80 mV
200 mV/div 6.95 mV 7.20 mV 500 mV/div 17.9 mV 18.9 mV 1 V/div 35.6 mV 37.3 mV RMS noise floor at 1 MQ (meas.) 1 mV/div 0.13 mV 2 mV/div 0.13 mV 5 mV/div 0.17 mV 10 mV/div 0.26 mV 20 mV/div 0.47 mV 50 mV/div 1.15 mV 100 mV/div 2.30 mV 200 mV/div 4.70 mV 500 mV/div 23.0 mV 1 V/div 23.0 mV 2 V/div 46.0 mV 5 V/div 115 mV 10 mV/div 23.0 mV 2 V/div 46.0 mV 5 V/div 115 mV 10 V/div 10 V/div 10 V/div 115 mV 10 V/div 100 mV/div 10 MHz 10 µV 18 µV 150 µV 100 MHz 31 µV 56 µV 470 µV 500 MHz 63 µV 110 µV 960 µV 100 MHz 500 MHz 63 µV 110 µV 960 µV 100 MHz 10 GHZ 10 µV 110 µV 960 µV 100 MHz 10 GHZ 10 µV 110 µV 960 µV 100 MHz 10 GHZ 10 µV 110 µV 960 µV 100 MHz 10 GHZ 10 µV 110 µV 960 µV 100 MHz 10 GHZ 10 µV 110 µV 960 µV 100 MHz 10 GHZ 10 µV 110 µV 960 µV 100 MHz 10 GHZ 10 µV 110 µV 960 µV 100 MHz 10 GHZ 10 µV 110 µV 960 µV 100 MHz 10 GHZ 10 µV 110 µV 960 µV 100 MHz 10 GHZ 10 µV 110 µV 960 µV 100 MHz 10 GHZ 10 µV 110 µV 960 µV 100 MHz 10 GHZ 10 µV 110 µV 960 µV 100 MHz 10 GHZ 10 µV 110 µV 110 µV 110 µV 100 MHz 10 GHZ 10 µV 110 µV 110 µV 100 MHz 10 GHZ 10 µV 110 µV 110 µV 100 MHz 10 µV 110 µV 110 µV 100 MHz 10 µV 110 µV 110 µV 100 MHz 10 µV 110 µV 110 µV 110 µV 100 MHz 10 µV 110 µV 110 µV 100 MHz 110 µV 110 µV 110 µV 100 MHz 110 µV 110 µV 11		50 mV/div		1.75 mV	1.90 mV
500 mV/div 17.9 mV 18.9 mV 1 V/div 35.6 mV 37.3 mV		100 mV/div		3.40 mV	3.55 mV
1 V/div 35.6 mV 37.3 mV RMS noise floor at 1 MQ (meas.) input sensitivity 1 mV/div 0.13 mV 2 mV/div 0.13 mV 5 mV/div 0.17 mV 10 mV/div 0.26 mV 20 mV/div 0.47 mV 50 mV/div 1.15 mV 100 mV/div 2.30 mV 200 mV/div 4.70 mV 500 mV/div 11.5 mV 1 V/div 23.0 mV 2 V/div 46.0 mV 5 V/div 115 mV 10 V/div 230 mV RMS noise floor for HD mode at 50 Q (meas.) bandwidth input sensitivity 1 mV/div 10 mV/div 100 mV/div 1 mV/div 10 mV/div 150 μV 100 MHz 31 μV 56 μV 470 μV 500 MHz 63 μV 110 μV 960 μV 1 GHz 92 μV 170 μV 1.41 mV		200 mV/div		6.95 mV	7.20 mV
RMS noise floor at 1 MΩ (meas.) 1 mV/div 2 mV/div 0.13 mV 5 mV/div 0.17 mV 10 mV/div 0.26 mV 20 mV/div 0.47 mV 50 mV/div 1.15 mV 100 mV/div 2.30 mV 2.30 mV 2.00 mV/div 4.70 mV 500 mV/div 11.5 mV 1 V/div 2.30 mV 2.7 /div 46.0 mV 2.7 /div 10 V/div 10 MHz 10 MHz 10 µV 10 µV 110 µV 150 µV 10 µV		500 mV/div		17.9 mV	18.9 mV
1 mV/div 0.13 mV 2 mV/div 0.13 mV 5 mV/div 0.17 mV 10 mV/div 0.26 mV 20 mV/div 0.47 mV 50 mV/div 1.15 mV 100 mV/div 2.30 mV 200 mV/div 11.5 mV 100 mV/div 23.0 mV 1 V/div 23.0 mV 2 V/div 46.0 mV 5 V/div 115 mV 10 V/div 230 mV RMS noise floor for HD mode at 50 Ω (meas.) bandwidth input sensitivity 10 MHz 10 μV 18 μV 150 μV 100 MHz 31 μV 56 μV 470 μV 500 MHz 63 μV 110 μV 960 μV 1 GHz 92 μV 170 μV 1.41 mV		1 V/div		35.6 mV	37.3 mV
2 mV/div 0.13 mV 5 mV/div 0.17 mV 10 mV/div 0.26 mV 20 mV/div 0.47 mV 50 mV/div 1.15 mV 100 mV/div 2.30 mV 200 mV/div 4.70 mV 500 mV/div 11.5 mV 1 V/div 23.0 mV 2 V/div 46.0 mV 5 V/div 115 mV 10 V/div 230 mV 10 V/div 230 mV 10 W/div 115 mV 10 W/div 115 mV 10 W/div 115 mV 10 W/div 10 mV/div 100 mV/div 1 mV/div 10 mV/div 100 mV/div 10 MHz 10 μV 18 μV 150 μV 100 MHz 31 μV 56 μV 470 μV 500 MHz 63 μV 110 μV 960 μV 1 GHz 92 μV 170 μV 1.41 mV	RMS noise floor at 1 M Ω (meas.)	input sensitivity			
5 mV/div		1 mV/div		0.13 mV	
10 mV/div 0.26 mV 20 mV/div 0.47 mV 50 mV/div 1.15 mV 1.15 mV 100 mV/div 2.30 mV 200 mV/div 4.70 mV 500 mV/div 11.5 mV 11.5 mV 1 V/div 23.0 mV 2 V/div 46.0 mV 5 V/div 115 mV 115 mV 10 V/div 230 mV 15 mV 10 MHz 10 μV 10 mV/div 10 mV/div 10 mV/div 10 mV/div 10 mV/div 10 mV/div 100 mV/div 100 mV/div 100 mV/div 100 MHz 31 μV 56 μV 470 μV 500 MHz 63 μV 110 μV 960 μV 1 GHz 92 μV 170 μV 1.41 mV		2 mV/div		0.13 mV	
20 mV/div 0.47 mV 1.15 mV 1.15 mV 1.00 mV/div 2.30 mV 2.30 mV		5 mV/div		0.17 mV	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10 mV/div		0.26 mV	
100 mV/div 2.30 mV 200 mV/div 4.70 mV 500 mV/div 11.5 mV 11.5 mV 23.0 mV 2 V/div 46.0 mV 5 V/div 115 mV 10 V/div 230 mV 8 MS noise floor for HD mode at 50 Ω (meas.) bandwidth input sensitivity 10 mV/div 10 mV/div 100 mV/div 100 mV/div 100 MHz 10 μV 18 μV 150 μV 100 MHz 31 μV 56 μV 470 μV 500 MHz 63 μV 110 μV 960 μV 1 GHz 92 μV 170 μV 1.41 mV		20 mV/div		0.47 mV	
200 mV/div 4.70 mV 500 mV/div 11.5 mV 1 V/div 23.0 mV 2 V/div 46.0 mV 115 mV 10 V/div 230 mV 230 mV 10 V/div 230 mV 10 V/div 230 mV 10 MHz 10 µV 18 µV 150 µV 100 MHz 31 µV 56 µV 470 µV 500 MHz 63 µV 110 µV 170 µV 1.41 mV 1.41		50 mV/div		1.15 mV	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100 mV/div		2.30 mV	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		200 mV/div		4.70 mV	
2 V/div 46.0 mV 5 V/div 115 mV 10 V/div 230 mV RMS noise floor for HD mode at 50 Ω (meas.) bandwidth input sensitivity 1 mV/div 10 mV/div 100 mV/div 10 MHz 10 μV 18 μV 150 μV 100 MHz 31 μV 56 μV 470 μV 500 MHz 63 μV 110 μV 960 μV 1 GHz 92 μV 170 μV 1.41 mV		500 mV/div		11.5 mV	
		1 V/div		23.0 mV	
RMS noise floor for HD mode at 50 Ω (meas.) bandwidth input sensitivity		2 V/div		46.0 mV	
RMS noise floor for HD mode at 50 Ω (meas.) bandwidth input sensitivity		5 V/div		115 mV	
1 mV/div 10 mV/div 100 mV/div 10 MHz 10 μV 18 μV 150 μV 100 MHz 31 μV 56 μV 470 μV 500 MHz 63 μV 110 μV 960 μV 1 GHz 92 μV 170 μV 1.41 mV		10 V/div		230 mV	
10 MHz 10 μV 18 μV 150 μV 100 MHz 31 μV 56 μV 470 μV 500 MHz 63 μV 110 μV 960 μV 1 GHz 92 μV 170 μV 1.41 mV	RMS noise floor for HD mode at 50 Ω (meas.)	bandwidth	input sensitivity		
100 MHz 31 μV 56 μV 470 μV 500 MHz 63 μV 110 μV 960 μV 1 GHz 92 μV 170 μV 1.41 mV			1 mV/div	10 mV/div	100 mV/div
500 MHz 63 μV 110 μV 960 μV 1 GHz 92 μV 170 μV 1.41 mV		10 MHz	10 μV	18 μV	150 μV
1 GHz 92 μV 170 μV 1.41 mV		100 MHz	31 μV	56 μV	470 μV
		500 MHz	63 μV	110 μV	960 μV
2 GHz 140 uV 220 uV 1.78 mV		1 GHz	92 μV	170 μV	1.41 mV
		2 GHz	140 μV	220 μV	1.78 mV

Horizontal system		
Timebase range		selectable between 25 ps/div and 10 000 s/div, time per div settable to any value within range
Channel deskew		±100 ns
Reference position		0% to 100% of measurement display area
Trigger offset range	max.	+(memory depth/current sampling rate)
	min.	-10000 s
Modes		normal, roll
Channel-to-channel skew		< 100 ps (meas.)
Timebase accuracy	after delivery/calibration, at +23°C	±10 ppb
	during calibration interval	±100 ppb
	long-term stability (more than one year since calibration)	\pm (50 + 50 × years since calibration) ppb
Delta time accuracy	corresponds to time error between two edges on same acquisition and channel; signal amplitude greater than 5 divisions, measurement threshold set to 50%, vertical gain 10 mV/div or greater; rise time lower than four sample periods; waveform acquired in realtime mode	$ \pm \text{(K/realtime sampling rate } + \\ $

Acquisition system		
Realtime sampling rate	R&S°RTO6-B90, R&S°RTO6-B91, R&S°RTO6-B92, R&S°RTO6-B93 options	max. 10 Gsample/s on each channel
	R&S®RTO6-B94, R&S®RTO6-B96 options	max. 10 Gsample/s on 4 channels, max. 20 Gsample/s on 2 channels
Realtime waveform acquisition rate	max.	> 1 000 000 waveforms/s
Memory depth ¹⁾	standard	200 Mpoints on 4 channels, 400 Mpoints on 2 channels, 800 Mpoints on 1 channel
	R&S°RTO6-B104 option	400 Mpoints on 4 channels, 800 Mpoints on 2 channels (restriction: 400 Mpoints on 2 channels when channel 1 and 2 or channel 3 and 4 are turned on), 800 Mpoints on 1 channel
	R&S°RTO6-B110 option	1 Gpoints on 4 channels, 2 Gpoints on 2 channels (restriction: 1 Gpoints on 2 channels when channel 1 and 2 or channel 3 and 4 are turned on), 2 Gpoints on 1 channel
Realtime digital filters	selectable for the data acquisition and/or the trigger system	
	lowpass	cutoff frequency selectable from 100 kHz to analog bandwidth
Decimation modes	sample	first sample in decimation interval
	peak detect	largest and smallest sample in decimation interval
	high resolution	average value of samples in decimation interval
	root mean square	root of squared average of samples in decimation interval
Waveform arithmetic	off	no arithmetic
	envelope	envelope of acquired waveforms
	average	average of acquired waveforms, max. average depth depends on decimation mode ²⁾
	sample	max. 16777215
	high resolution	max. 65 535
	root mean square	max. 255
	reset condition	no reset (standard), reset by time, reset by number of processed waveforms
Waveform streams per channel		up to 3 with independent selection of decimation mode and waveform arithmetic
Sampling modes	realtime mode	max. sampling rate set by digitizer
	interpolated time	enhancement of sampling resolution by interpolation; max. equivalent sampling rate is 4 Tsample/s
Interpolation modes		linear, sin(x)/x, sample&hold
Ultra segmented mode	continuous recording of waveforms in acquisition	memory without interruption due to visualization
	max. realtime waveform acquisition rate	> 2500000 waveforms/s
	min. blind time between consecutive acquisitions	< 300 ns

Differential signals		
General description	Calculation of differential and common mode signals from p part and n part connected to separate input channels. The R&S®RTO64 digital trigger concept enables these signals to be used as a trigger input.	
Input channels		channel 1, channel 2, channel 3, channel 4
Differential signal	difference between two input channels	channel 1 and channel 2, channel 3 and channel 4
Common mode signal	sum of two input channels	channel 1 and channel 2, channel 3 and channel 4
Maximum number of outputs	differential signals	2
	common mode signals	2

The maximum available memory depth depends on the bit depth of the acquired data and, therefore, on the settings of the acquisition system, such as decimation mode, waveform arithmetic, number of waveform streams or high definition mode.

²⁾ Waveform averaging is not compatible with peak detect decimation.

High definition mode			
General description	The high definition mode increases the numeric resolution of waveform signals with digital filtering to reduce noise. The signals with increased numeric resolution are used as a triggering input thanks to the R&S*RTO64 digital trigger concept.		
Numeric resolution	R&S°RTO6-B90, R&S°RTO6-B91, R&S°RTO6-B92, R&S°RTO6-B93, R&S°RTO6-B94, R&S°RTO6-B96 options (4 channels)		
	bandwidth		bit resolution
	10 kHz to 50 MHz		16 bit
	100 MHz		14 bit
	200 MHz		13 bit
	300 MHz		12 bit
	500 MHz		12 bit
	1 GHz		10 bit
	R&S°RTO6-B94, R&S°RTO6-B96 options (2 channels)		els)
	bandwidth		bit resolution
	10 kHz to 200 MHz		16 bit
	300 MHz		12 bit
	500 MHz		12 bit
	1 GHz		11 bit
	2 GHz		10 bit
Realtime sampling rate	R&S®RTO6-B90, R&S®RT R&S®RTO6-B93, R&S®RTo options (4 channels)	· · · · · ·	max. 5 Gsample/s on each channel
	R&S®RTO6-B94, R&S®RT (2 channels)	O6-B96 options	max. 10 Gsample/s on each channel
Input sensitivity			input sensitivity range extends down to 500 µV/div; 500 µV/div is a magnification of 1 mV/div setting

Trigger system		
Sources		channel 1, channel 2, channel 3, channel 4
Sensitivity		10 ⁻⁴ div, from DC to instrument bandwidth for all vertical scales
Trigger jitter	full-scale sine wave of frequency set to -3 dB bandwidth	< 1 ps (RMS) (meas.)
Coupling mode	standard	same as selected channel
	lowpass filter	cutoff frequency selectable from 100 kHz to 50% of analog bandwidth
Sweep mode		auto, normal, single, n single
Event rate	max.	one event for every 400 ps time interval
Trigger level	range	±5 div from center of screen
Trigger hysteresis	modes	auto (standard) or manual
	sensitivity	10 ⁻⁴ div, from DC to instrument bandwidth for all vertical scales
Holdoff range	time	100 ns to 10 s, fixed and random
	events	1 event to 2000000000 events
Main trigger modes		
Edge	triggers on specified slope (positive, negative or either) and level	
Glitch	triggers on glitches of positive, negative or either polarity that are shorter or longer than specified width	
	glitch width	100 ps to 1000 s
		50 ps to 1000 s (R&S°RTO6-B94, R&S°RTO6-B96 options)

Trigger system			
Width	triggers on positive or negative pulse side the interval	e of specified width; width can be shorter, longer, inside or out-	
	pulse width	100 ps to 1000 s	
		50 ps to 1000 s (R&S°RTO6-B94, R&S°RTO6-B96 options)	
Runt		triggers on pulse of positive, negative or either polarity that crosses one threshold but fails to cross a second threshold before recrossing the first one; runt pulse width can be arbitrary, shorter, longer, inside or outside the interval	
	runt pulse width	100 ps to 1000 s	
		50 ps to 1000 s (R&S°RTO6-B94, R&S°RTO6-B96 options)	
Window	triggers when signal enters or exits a triggers also when signal stays insid	a specified voltage range; le or outside the voltage range for a specified period of time	
Timeout	triggers when signal stays high, low	or unchanged for a specified period of time	
	timeout	100 ps to 1000 s	
		50 ps to 1000 s (R&S®RTO6-B94, R&S®RTO6-B96 options)	
Interval	triggers when time between two collonger, inside or outside a specified	nsecutive edges of same slope (positive or negative) is shorter, range	
	interval time	100 ps to 1000 s	
		50 ps to 1000 s (R&S°RTO6-B94, R&S°RTO6-B96 options)	
Slew rate		triggers when the time required by a signal edge to toggle between user-defined upper and lower voltage levels is shorter, longer, inside or outside the interval;	
	toggle time	100 ps to 1000 s	
		50 ps to 1000 s (R&S°RTO6-B94, R&S°RTO6-B96 options)	
Data2clock	channels; users can specify monitor	triggers on setup time and hold time violations between clock and data present on any two input channels; users can specify monitored time interval ranging from –100 ns to 100 ns around a clock	
Pattern	triggers when a logical combination	edge and must be at least 100 ps wide triggers when a logical combination (and, nand, or, nor) of the input channels stays true for a period	
State	triggers when a logical combination	of time shorter, longer, inside or outside a specified range triggers when a logical combination (and, nand, or, nor) of the input channels stays true at a slope	
Serial pattern	triggers on serial data pattern up to pattern bits may be high (H), low (L)	(positive, negative or either) in one selected channel triggers on serial data pattern up to 128 bit clocked by one input channel; pattern bits may be high (H), low (L) or don't care (X); clock edge slope may be positive, negative or either; hardware CDR selectable as clock source (requires R&S*RTO6-K13 option)	
	max. data rate	< 2.50 Gbps	
		< 5 Gbps	
		(R&S°RTO6-B94, R&S°RTO6-B96 options)	
TV/video	55	ssive and interlaced video signals including NTSC, PAL, PAL-M, t standards as well as custom bi-level and tri-level sync video	
	trigger modes	all fields, odd fields, even fields, all lines, line number	
Line	triggers with the frequency of the Al	C power line voltage	
Advanced trigger modes			
Zone trigger	triggers on user-defined zones draw	n on the display	
	source	acquired waveforms (input channels), math waveforms	
	number of zones	up to 8	
	zone shapes	rectangles, polygones	
	zone types	must intersect, must not intersect	
	combination of zones	logical combination of zones of multiple sources using Boolean expressions	
	trigger compatibility	compatible with the edge, glitch, width, runt, window, timeout, interval, slew rate, data2clock, pattern, state, serial pattern, trigger qualification, and sequence trigger modes	

Trigger system			
Trigger qualification	trigger events may be qualified by a logical co		
	qualifiable events	edge, glitch, width, runt, window, timeout, interval	
Sequence trigger (A/B/R trigger)	00	triggers on B event after occurrence of A event; delay condition after A event specified either as time interval or number of B events; an optional R event resets the trigger sequence to A	
	A event	any trigger mode	
	B event	edge, glitch, width, runt, window, timeout, interval, slew rate	
	R event	edge, glitch, width, runt, window, timeout, interval, slew rate	
Serial bus trigger	optional	see dedicated triggering and decoding options	
NFC trigger		with R&S®RTO6-K11 option	
CDR trigger	triggers on clock signal recovered from the tri selectable as fraction of bit period; requires R&S®RTO6-K13 option	igger source signal; phase of the trigger instant user-	
	CDR configuration parameters	PLL order (first or second), nominal bit rate, loop bandwidth, relative bandwidth, damping factor, unit interval offset	
	CDR bit rate range		
	R&S°RTO6-B90, R&S°RTO6-B91, R&S°RTO6-B92, R&S°RTO6-B93 options	200 kbps to 2.5 Gbps	
	R&S®RTO6-B94, R&S®RTO6-B96 options	200 kbps to 2.5 Gpbs standard, 400 kbps to 5.0 Gbps when operating at 20 Gsample/s realtime sampling rate ³⁾	
External trigger input	input impedance	50 Ω (nom.) or 1 M Ω (nom.) 20 pF (meas.)	
	max. input voltage at 50 Ω	5.5 V (peak)	
	max. input voltage at 1 $M\Omega$	30 V (RMS) derates at 20 dB/decade to 5 V (RMS) above 25 MHz	
	trigger level	±5 V	
	sensitivity		
	input frequency ≤ 100 MHz	300 mV (V _{pp})	
	100 MHz < input frequency ≤ 500 MHz	600 mV (V _{pp})	
	input coupling	AC, DC (50 Ω and 1 M Ω), GND, HF reject (attenuates > 50 kHz or > 50 MHz, user-selectable), LF reject (attenuates < 5 kHz or < 50 kHz, user-selectable)	
	trigger modes	edge (rise or fall)	
Trigger out	functionality	a pulse is generated for every acquisition trig- ger event	
	output voltage	0 V to 5 V at high impedance; 0 V to 2.5 V at 50 Ω	
	pulse width	selectable between 50 ns and 60 ms	
	pulse polarity	low active or high active	
	output delay	depends on trigger settings	
	jitter	±600 ps (meas.)	

The frontends of the R&S®RTO6-B94 and the R&S®RTO6-B96 sample at 20 Gsample/s when at most one channel of each pair {channel 1, channel 2} and {channel 3, channel 4} is active; and the user-selected sampling resolution in realtime sampling mode or interpolated time sampling mode is 50 ps or smaller.

RF characteristics 4)		
Sensitivity/noise density	at 1.001 GHz (measurement of the power spectral density at 1.001 GHz at input sensitivity 1 mV/div, corresponding to –36 dBm input range of the oscilloscope, using the FFT with center frequency 1.001 GHz, span 500 kHz, RBW 3 kHz)	–159 dBm (1 Hz) (meas.)
	at 100 kHz (measurement of the power spectral density at 100 kHz at input sensitivity 1 mV/div, corre- sponding to –36 dBm input range of the oscil- loscope, using the FFT with center frequency 100 kHz, span 20 kHz, RBW 200 Hz)	–156 dBm (1 Hz) (meas.)
Noise figure	at 1.001 GHz (calculated based on the noise density above)	15 dB (meas.)
	at 100 kHz (calculated based on the noise density above)	18 dB (meas.)
Signal-to-noise ratio	measured for an input carrier with frequency 1 GHz and level 0 dBm at input sensitivity 70 mV/div, corresponding to 0 dBm input range of the oscilloscope, using the FFT with center frequency 1 GHz, span 100 MHz, RBW 400 Hz at +20 MHz from the center frequency	112 dB (meas.)
Absolute amplitude accuracy	0 Hz to 5 GHz	±1 dB (meas.)
Spurious-free dynamic range	measured for an input carrier with frequency 950 MHz and level 0 dBm at input sensitivity 70 mV/div, corresponding to 0 dBm input range of the oscilloscope, using the FFT with center frequency 2 GHz, span 4 GHz, RBW 100 kHz	68 dBc (meas.)
Second harmonic distortion	measured for an input carrier with frequency 950 MHz and level 0 dBm at input sensitivity 70 mV/div, corresponding to 0 dBm input range of the oscilloscope, using the FFT with center frequency 950 MHz, span 4 GHz, RBW 100 kHz	–49 dBc (meas.)
Third harmonic distortion	measured for an input carrier with frequency 950 MHz and level 0 dBm at input sensitivity 70 mV/div, corresponding to 0 dBm input range of the oscilloscope, using the FFT with center frequency 950 MHz, span 4 GHz, RBW 100 kHz	-44 dBc (meas.)

measurement panels	up to 8 measurement panels; each panel may contain any number of auto- matic measurements of the same category
gate	delimits the display region evaluated for automatic measurements
reference levels	user-configurable vertical levels define support structures for automatic measurements
statistics	displays maximum, minimum, mean, standard deviation, RMS and measurement count for each automatic measurement
track	measurement results displayed as continuous trace that is time-correlated to the measurement source
long-term analysis	history of selected measurements as trace against count index
histogram	available for the main measurement of each measurement panel; automatic or manual selection of bin number and scale; counters for measurements under, within and over the histogram range
limit check	measurements tested against user-defined margins and limits; pass or fail conditions may launch automatic response: acquisition stop, beep, print and save waveform
	gate reference levels statistics track long-term analysis histogram

 $^{^{\}mbox{\tiny 4)}}$ The RF characteristics are measured for the R&S°RTO6-B96 option with 6 GHz bandwidth.

Waveform measurements		
Measurement category	amplitude and time	amplitude, high, low, maximum, minimum, peak-to-peak, mean, RMS, sigma, overshoot, area, rise time, fall time, positive width, negative width, period, frequency, duty cycle, delay, phase, burst width, pulse count, positive switching, negative switching, cycle area, cycle mean, cycle RMS, cycle sigma, setup/hold time, setup/hold ratio, pulse train, slew rate rising, slew rate falling, DC voltmeter (requires Rohde & Schwarz active probe with R&S*ProbeMeter function)
	eye diagram	extinction ratio, eye height, eye width, eye top, eye base, Q factor, S/N ratio, duty cycle distortion, eye rise time, eye fall time, eye bit rate, eye amplitude, jitter (peak-to-peak, 6-sigma, RMS)
	spectrum	channel power, bandwidth, occupied bandwidth, harmonic search, total harmonic distortion THD in dB and % using power values, total harmonic distortion variants THD _a , THD _u and THD _r using voltage, overall voltage and overall voltage root means square, peak list (THD _a , THD _u , THD _r and peak list require R&S*RTO6-K37 option)
	jitter	cycle-to-cycle jitter, N-cycle jitter, cycle-to-cycle width, cycle-to-cycle duty cycle, time-interval error, data rate, unit interval, skew delay, skew phase; requires R&S®RTO6-K12 option
Cursors	setup	up to 4 cursor sets on screen, each set consisting of two horizontal and two vertical cursors
	target	acquired waveforms (input channels), math waveforms, reference waveforms, track wave- forms, XY diagrams
	operating mode	vertical measurements, horizontal measurements or both; vertical cursors either set manually or locked to waveform
Histogram	source	acquired waveform (input channels), math waveform, reference waveform
	mode	vertical (for timing statistics), horizontal (for amplitude statistics)
	automatic measurements	waveform count, waveform samples, histogram samples, histogram peak, peak value, maximum, minimum, median, range, mean, sigma, mean ± 1, 2 and 3 sigma, marker ± probability

Mask testing		
Test definition	number of masks	up to 8 simultaneously
	source	acquired waveforms (input channels), math waveforms
	fail condition	sample hit or waveform hit
	fail tolerance	minimum number of fail events for test fail in range from 0 to 40000000000
	test rate	up to 600 000 waveforms/s
	action on error	acquisition stop, beep, print and save waveform
	save/load to file	test and mask settings (.xml format)
Mask definition with segments	number of independent segments	up to 8
	segment definition	array of points and connecting rule (upper, lower, inner) define segment region
	segment input	point and click on touchscreen, editable list
Mask definition with tolerance tube	input signal	acquired waveform
	definition of tolerance tube	horizontal width, vertical width, vertical stretch, vertical position

Mask testing		
Mask definition with eye mask assistant (requires R&S®RTO6-K12 option)	primary mask shape	
	type	diamond, square, hexagon, octagon
	dimensions	main and secondary height, main and secondary width, depending on selected shape
	position	vertical offset, horizontal offset
	secondary mask shapes	
	locations	any combination of left, right, top, bottom
	position	horizontal and vertical offset with respect to center of primary mask shape
Result statistics	category	completed acquisitions, remaining acquisitions, state, sample hits, mask hits, fail rate, test result (pass or fail)
Visualization options	waveform style	vectors, dots
	violation highlighting	hits (on/off), highlight persistence (50 ms to 50 s or infinite), waveform color (default: red)
	mask colors	configurable colors for mask without violation (default: translucent gray), mask with violation (default: translucent red), mask with contact (default: translucent pale red)

Waveform math				
General features	number of math waveforms	up to 4		
	number of reference waveforms	up to 4		
	waveform arithmetic	user-selectable average or envelope of consecutive waveforms		
Algebraic expressions	user may define complex mathematical ex	pressions involving waveforms and measurement results		
	math functions	add, subtract, multiply, divide, absolute value, square, square root, integrate, differentiate, exp, \log_{10} , $\log_{e'}$, $\log_{e'}$, rescale, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, autocorrelation, crosscorrelation		
	logical operators	not, and, nand, or, nor, xor, nxor		
	relational operators	Boolean result of $=$, \neq , $>$, $<$, \leq , \geq		
	frequency domain	spectral magnitude and phase, real and imaginary spectra, group delay		
	digital filter	lowpass, highpass		
	special functions	CDR transform; requires R&S®RTO6-K12 option		
Optimized math	operators	add, subtract, multiply, invert, absolute value, differentiate, log ₁₀ , log _e , log ₂ , rescale, FIR, FFT magnitude		
Spectrum analysis	FFT magnitude spectrum			
	setup parameters	center frequency, frequency span, frame overlap, frame window (rectangular, Hamming, Hann, Blackman, Gaussian, Flattop, Kaiser Bessel), user-selectable spectrum averaging, RMS, envelope, max. hold and min. hold (max. hold and min. hold require R&S°RTO6-K37 option)		
	max. realtime waveform acquisition rate	> 1000 waveforms/s		

Search and mark function		
General description	scans acquired waveforms for occurrence of a user-defined set of events and highlights each occurrence	
Basic setup	source	all physical input channels, math waveforms, reference waveforms
	search panels	up to 8, where each panel may manage multiple event searches
	search mode	manually triggered or continuous
	search conditions	

Search and mark function				
	supported events	edge, glitch, width, runt, window, timeout, interval, slew rate, data2clock, state		
	event configuration	identical to corresponding trigger event		
	event selection	single or multiple events on same source		
Search oscilloscope	mode	current waveform, gated time interval		
Result visualization	table			
	sort mode	horizontal position or vertical value		
	max. result count	specifies max. table size		
	zoom window	centered on highlighted event		

Display characteristics				
Diagram types	Yt, XY, spectrum, long-term measurement, spectrogram (spectrogram requires R&S®RTO6-K37 option)			
Display interface configuration	display area can be split up into separate diagram areas by dragging and dropping signal icons; each diagram area can hold any number of signals; diagram areas may be stacked on top of each other and later accessed via the dynamic tab menu			
Signal icon	each active waveform is represented by a separate signal icon on the signal bar; the signal icon displays individual vertical and acquisition settings; a waveform can be minimized to signal icon to appears as a realtime preview in miniature; measurement results may also be minimized to a signal icon			
Toolbar	quick access to 28 important tools; directly set most common parameters in a simple menu and access to more detailed parameters in main menu; user-defined selection of tools in toolbar			
Upper menu	displays trigger, horizontal and acquisition settings; quick access to settings			
Main menu	provides access to all instruments settings in compact menu			
Axis label	X-axis ticks and Y-axis ticks labeled with tick value and physical unit			
Diagram label	diagrams may be individually labeled with a descriptive user-defined name			
Diagram layout	grid, crosshair, axis labels and diagram label may be switched on and off separately			
Persistence	50 ms to 50 s, or infinite			
Zoom	user-defined zoom window provides vertical and horizontal zoom; each diagram area supports multiple zoom windows; touchscreen interface simplifies resize and drag operations on zoom window			
Signal colors	predefined or user-defined color tables for persistence display			

Input and output		
Front		
Channel inputs		BNC-compatible, for details see vertical system
	probe interface	auto-detection of passive probes, Rohde&Schwarz active probe interface
Auxiliary output		SMA connector, for future use
Probe compensation output	signal shape	rectangle, $V_{low} = 0 \text{ V}$, $V_{high} = 1 \text{ V}$ amplitude 1 V (V_{pp}) $\pm 5\%$
	frequency	1 kHz ± 1%
	impedance	nom. 50 Ω
Ground jack		connected to ground
USB interface		2 ports, type A plug, version 2.0
Rear		
External trigger input		BNC, for details see trigger system
Trigger out		BNC, for details see trigger system
USB interface		2 ports, type A plug and 1 port, type B plug, version 3.1 Gen 1
LAN interface		RJ-45 connector, supports 10/100/1000BASE-T
External monitor interface		HDMI 2.0 and DisplayPort++ 1.3, output of oscilloscope display or extended desktop display

Input and output		
GPIB interface		see R&S®RTO6-B10 option
Reference input	connector	BNC female
	impedance	50 Ω (nom.)
	input frequency range	1 MHz to 20 MHz, in 1 MHz steps
	sensitivity	\geq 0 dBm into 50 Ω , \geq 8 dBm at 1 MHz
Reference output	connector	BNC female
	impedance	50 Ω (nom.)
	output signal with internal reference	10 MHz (specified in timebase accuracy), 7 dBm (nom.)
	output signal with external reference	none
Security slot		for standard Kensington style lock

General data					
Display	type	15.6" LC TFT color display with capacitive touchscreen			
	resolution	1920 x 1080 pixel (full HD)			
Operating system		Windows 10 64 bit			
Temperature					
Temperature loading	operating temperature range	0°C to +45°C			
	storage temperature range	-40°C to +70°C			
Temperature loading		in line with MIL-PRF-28800F section 4.5.5.1.1.1 class 3 tailored to +45°C for operation			
Climatic loading		+25°C/+40°C at 85% relative humidity cyclic, in line with IEC 60068-2-30			
		+30°C/+40°C/+45°C at 95/75/45%, in line with MIL-PRF-28800F section 4.5.5.1.1.2 class 3 tailored to +45°C for operation			
Altitude					
Operating		up to 3000 m above sea level			
Nonoperating		up to 4600 m above sea level			
Mechanical resistance					
Vibration	sinusoidal	5 Hz to 150 Hz, max. 1.8 g at 55 Hz; 0.5 g from 55 Hz to 150 Hz, in line with EN 60068-2-6			
		5 Hz to 55 Hz, in line with MIL-PRF-28800F section 4.5.5.3.2 class 3			
	random	10 Hz to 300 Hz, acceleration 1.2 g (RMS), in line with EN 60068-2-64			
		5 Hz to 500 Hz, acceleration 2.058 g (RMS), in line with MIL-PRF-28800F section 4.5.5.3.1 class 3			
Shock		40 g shock spectrum, in line with MIL-STD-810G, method no. 516.6, procedure I			
		30 g functional shock, halfsine, duration 11 ms, in line with MIL-PRF-28800F section 4.5.5.4.1			
EMC					
RF emission		in line with CISPR 11/EN55011 group 1 class A (for a shielded test setup); instrument complies with EN55011, EN61326-1 and EN61326-2-1 class A emission requirements and is suitable for use in industrial environments			
Immunity		in line with IEC/EN61326-1 table 2, immunity test requirements for industrial environment ⁵⁾			
Certifications		VDE, _C CSA _{US} , KC			

 $^{^{5)}\,\,}$ Test criterion is displayed noise level within ± 1 div for input sensitivity of 5 mV/div.

General data				
Calibration interval		1 year		
Power supply				
AC supply		100 V to 240 V at 50 Hz to 60 Hz and 400 Hz, max. 5.5 A to 2.3 A, in line with MIL-PRF 28800F section 3.5		
Power consumption		max. 450 W		
Safety		in line with IEC 61010-1, EN 61010-1, CAN/CSA-C22.2 No. 61010-1, UL 61010-1		
Mechanical data				
Dimensions	$W \times H \times D$	450 mm × 315 mm × 204 mm (17.72 in × 12.40 in × 8.03 in)		
Weight	without options, nominal	10.7 kg (23.59 lb)		

ORDERING INFORMATION

Туре	Order No.		
R&S®RTO64	1802.0001.04		
ory)			
R&S®RTO6-B90	1802.0182.02		
R&S®RTO6-B91	1802.0199.02		
R&S®RTO6-B92	1802.0201.02		
R&S®RTO6-B93	1802.0218.02		
R&S®RTO6-B94	1802.0224.02		
R&S®RTO6-B96	1802.0230.02		
R&S®RTO6-B1	1801.6741.02		
R&S®RTO6-B1E	1801.6735.02		
R&S®RTO6-B6	1801.6758.02		
R&S®RTO6-B104	1801.6793.02		
R&S®RTO6-B110	1801.6806.04		
R&S®RTO6-B7	1801.6764.02		
R&S®RTO6-B10	1801.6770.02		
R&S®RTO6-B19	1801.6787.02		
are options		Included protocols	
R&S®RTO6-K500	1801.6864.02		
R&S®RTO6-K510	1801.7019.02	I ² C/SPI/RS-232/UART/I ² S/LJ/RJ/TDM/	'Manchester/NRZ
R&S®RTO6-K520	1801.7025.02	CAN/LIN incl. CAN-dbc file import/CA incl. Fibex file import/SENT/CXPI	AN-FD, FlexRay™
R&S®RTO6-K530	1801.7031.02	MIL-STD-1553/ARINC429/SpaceWire	•
R&S®RTO6-K540	1801.7048.02	10BASE-T/100BASE-TX/MDIO	
R&S®RTO6-K550	1801.7054.02	MIPI RFFE	
R&S®RTO6-K560	1801.7060.02	IEEE 100BASE-T1/IEEE 1000BASE-T1	
R&S®RTO6-K570	1801.7077.02	USB 1.0/1.1/USB 2.0/HSIC/USB 3.1 Gen 1, USB Power Delivery (USB-PD)/USB SSIC	
R&S®RTO6-K580	1801.7083.02	MIPI D-PHY/M-PHY/UniPro/Decoding	g for DSI und CSI-2
R&S®RTO6-K590	1801.7090.02	8b10b (up to 6.25 Gbit/s)/PCI Express	s Revision 1.x/2.x
R&S®RTO6-TDBDL	1801.7725.02	R&S°RTO6-K500/-K510/-K520/-K530/ -K570/-K580/-K590	-K540/-K550/-K560/
R&S®RTO6-K11	1801.6812.02		
R&S®RTO6-K12	1801.6829.02		
R&S®RTO6-K13	1801.6835.02		
R&S®RTO6-K31	1801.6858.02		
R&S®RTO6-K37	1801.6870.02		
R&S®RTO6-K121	1801.6887.02		
R&S®RTO6-K130	1801.6893.02		
R&S®RTO6-K133	1801.6906.02		
R&S®RTO6-K134	1802.9450.02		
ns		Test fixture set	
R&S®RTO6-K21	1801.6912.02	R&S®RT-ZF1	
R&S®RTO6-K22	1801.6929.02	R&S®RT-ZF2	
R&S®RTO6-K23	1801.6935.02	R&S®RT-ZF2	
	1001 6041 02	R&S®RT-ZF8, R&S®RT-ZF7A or	
R&S®RTO6-K24	1801.6941.02	R&S®RT-ZF2, R&S®RT-ZF3	
R&S®RTO6-K24 R&S®RTO6-K26	1801.6958.02	R&S*K1-ZF2, R&S*K1-ZF3	
		H&5*HI-ZF2, H&5*HI-ZF3	
	R&S*RTO6-B90 R&S*RTO6-B91 R&S*RTO6-B91 R&S*RTO6-B92 R&S*RTO6-B93 R&S*RTO6-B94 R&S*RTO6-B96 R&S*RTO6-B16 R&S*RTO6-B1E R&S*RTO6-B104 R&S*RTO6-B100 R&S*RTO6-K500 R&S*RTO6-K11 R&S*RTO6-K11 R&S*RTO6-K11 R&S*RTO6-K11 R&S*RTO6-K131 R&S*RTO6-K131 R&S*RTO6-K131 R&S*RTO6-K134 R&S*RTO6-K134	R&S*RTO64 1802.0001.04 DOTY) R&S*RTO6-B90 1802.0182.02 R&S*RTO6-B91 1802.0199.02 R&S*RTO6-B92 1802.0201.02 R&S*RTO6-B93 1802.0218.02 R&S*RTO6-B94 1802.0224.02 R&S*RTO6-B96 1802.0230.02 R&S*RTO6-B96 1801.6741.02 R&S*RTO6-B1E 1801.6735.02 R&S*RTO6-B1E 1801.6793.02 R&S*RTO6-B10 1801.6793.02 R&S*RTO6-B10 1801.6764.02 R&S*RTO6-B10 1801.6764.02 R&S*RTO6-B10 1801.6770.02 R&S*RTO6-B19 1801.6787.02 are options R&S*RTO6-K500 1801.6864.02 R&S*RTO6-K501 1801.7019.02 R&S*RTO6-K501 1801.7025.02 R&S*RTO6-K501 1801.7048.02 R&S*RTO6-K501 1801.7048.02 R&S*RTO6-K501 1801.7054.02 R&S*RTO6-K501 1801.7060.02 R&S*RTO6-K501 1801.7077.02 R&S*RTO6-K501 1801.7077.02 R&S*RTO6-K501 1801.7079.02 R&S*RTO6-K501 1801.7060.02 R&S*RTO6-K501 1801.7079.02 R&S*RTO6-K501 1801.7090.02 R&S*RTO6-K501 1801.6858.02 R&S*RTO6-K11 1801.6858.02 R&S*RTO6-K11 1801.6870.02 R&S*RTO6-K11 1801.6893.02 R&S*RTO6-K11 1801.6893.02 R&S*RTO6-K11 1801.6893.02 R&S*RTO6-K13 1801.6906.02 R&S*RTO6-K13 1801.6990.02 R&S*RTO6-K13 1801.6990.02 R&S*RTO6-K13 1801.6990.02 R&S*RTO6-K13 1801.6990.02 R&S*RTO6-K13 1801.6990.02 R&S*RTO6-K13 1801.6990.02	R&S*RTO64 1802.0001.04 R&S*RTO6-B90 1802.0182.02 R&S*RTO6-B91 1802.0199.02 R&S*RTO6-B92 1802.0210.02 R&S*RTO6-B93 1802.0218.02 R&S*RTO6-B94 1802.0224.02 R&S*RTO6-B96 1802.0230.02 R&S*RTO6-B96 1801.6741.02 R&S*RTO6-B1 1801.6741.02 R&S*RTO6-B1 1801.6758.02 R&S*RTO6-B10 1801.6793.02 R&S*RTO6-B10 1801.6793.02 R&S*RTO6-B10 1801.6764.02 R&S*RTO6-B10 1801.6770.02 R&S*RTO6-B10 1801.6770.02 R&S*RTO6-B10 1801.6787.02 R&S*RTO6-B10 1801.6787.02 R&S*RTO6-K500 1801.7019.02 R&S*RTO6-K500 1801.7019.02 R&S*RTO6-K500 1801.7019.02 R&S*RTO6-K500 1801.7031.02 R&S*RTO6-K500 1801.7031.02 R&S*RTO6-K500 1801.7048.02 R&S*RTO6-K500 1801.7048.02 R&S*RTO6-K500 1801.7048.02 R&S*RTO6-K500 1801.7077.02 R&S*RTO6-K500 1801.7077.02 R&S*RTO6-K500 1801.7077.02 R&S*RTO6-K500 1801.7077.02 R&S*RTO6-K500 1801.7077.02 R&S*RTO6-K500 1801.7077.02 USB 1.0/1.1/USB 2.0/HSIC/USB 2.1 USB Power Delivery (USB-PD/USB 3.1 USB ROW-K590 R&S*RTO6-K590 1801.7090.02 R&S*RTO6-K590 1801.6829.02 R&S*RTO6-K11 1801.6829.02 R&S*RTO6-K31 1801.6835.02 R&S*RTO6-K31 1801.6835.02 R&S*RTO6-K31 1801.6835.02 R&S*RTO6-K31 1801.6893.02 R&S*RTO6-K31 1801.6906.02 R&S*RTO6-K31 1801.

Designation	Туре	Order No.		
Ethernet compliance test (MGBASE-T1)	R&S®RTO6-K88	1801.7890.02		
IEEE 10BASE-T1 compliance test	R&S®RTO6-K89	1801.6987.02	R&S®RT-ZF8, R&S®RT-ZF7A or R&S®RT-ZF2	
DDR3/DDR3L/LPDDR3 signal integrity debug and compliance test	R&S®RTO6-K91	1801.6993.02	-	
eMMC compliance test	R&S®RTO6-K92	1801.7160.02	_	
R&S®ScopeSuite automation	R&S®RTO6-K99	1326.4419.02	_	
Step 7: choose signal analysis software and o	pptions		Waveform mode	I/Q mode 1)
Baseband I/Q analysis	R&S®VSE		•	•
Pulse measurements	R&S®VSE-K6	1320.7516.03	•	•
Multichannel pulse analysis	R&S®VSE-K6a	1345.1286.03	•	•
Modulation analysis of AM/FM/PM modulated single carriers	R&S®VSE-K7	1320.7539.02	•	•
GSM/EDGE/EDGE Evolution signal analysis	R&S®VSE-K10	1320.7574.03		•
Transient analysis	R&S®VSE-K60	1320.7868.03	•	
Analysis of digitally modulated signals	R&S®VSE-K70	1320.7522.02	•	•
BGPP WCDMA uplink and downlink signal analysis, including HSDPA, HSUPA and HSPA+	R&S°VSE-K72	1320.7580.02		•
WLAN signal analysis, in line with the WLAN EEE802.11a/b/g/n/p/ac/ax standards	R&S°VSE-K91	1320.7597.02		•
Analysis of user-defined OFDM and OFDMA signals	R&S®VSE-K96	1320.7922.03	•	•
TE and LTE advanced signal analysis	R&S®VSE-K100	1320.7545.02		•
TE and LTE advanced signal analysis	R&S®VSE-K102	1320.7551.03		•
TE and LTE advanced signal analysis	R&S®VSE-K104	1320.7568.02		•
TE narrowband IoT analysis	R&S®VSE-K106	1320.7900.03		•
5G signal analysis	R&S®VSE-K144	1309.9574.03		•
5G NR MIMO downlink signal analysis	R&S®VSE-K146	1345.1305.02		•
Step 8: choose probes and accessories				
Standard accessories: 4 × R&S®RT-ZP10 passiv	ve probe, quick start g	guide, power cord, ac	cessories bag	
Additional probes: See probes and accessories	for Rohde&Schwarz	oscilloscopes (PD 36	06.8866.12)	
Precision BNC to SMA adapter	R&S®RT-ZA16	1320.7074.02		
High-precision and low-loss matched cable pair, ength: 1 m	R&S®RT-ZA17	1337.8991.02		
ront cover	R&S®RTO6-Z1	1801.6641.02		
Carrying case	R&S®RTO6-Z3	1801.6658.02		
Fransit case	R&S®RTO6-Z4	1801.6712.02		
9" rackmount kit	R&S°ZZA-RTO6	1801.6729.02		
Step 9: choose warranty and services				
Varranty				
Base unit		3 years		
All other items ²⁾		1 year		
Service options				
Extended warranty, one year	R&S®WE1			
Extended warranty, two years	R&S®WE2			
Extended warranty with calibration coverage, one year	R&S°CW1			
Extended warranty with calibration coverage, two years	R&S°CW2	Please contact your	local Rohde & Schwarz sales office.	
Extended warranty with accredited calibration coverage, one year	R&S®AW1			
Extended warranty with accredited calibration coverage, two years	R&S®AW2			

¹⁾ Requires R&S®RTO-K11.

The terms HDMI and HDMI High-Definition Multimedia Interface, and the HDMI Logo are trademarks or registered trademarks of HDMI Licensing, LLC in the United States and other countries.

For options that are installed, the remaining base unit warranty applies if longer than 1 year. Exception: all batteries have a 1 year warranty.

OSCILLOSCOPE PORTFOLIO

R&S®	RTH1000	RTC1000	RTB2000	RTM3000
Vertical				
Bandwidth	60/100/200/350/500 MHz ¹⁾	50/70/100/200/300 MHz ¹⁾	70/100/200/300 MHz ¹⁾	100/200/350/500 MHz/1 GHz ¹⁾
Number of channels	2 plus DMM/4	2	2/4	2/4
Resolution	10 bit	8 bit	10 bit	10 bit
V/div 1 MΩ	2 mV to 100 V	1 mV to 10 V	1 mV to 5 V	500 μV to 10 V
V/div 50 Ω	-			500 μV to 1 V
Horizontal				
Sampling rate per channel (in Gsample/s)	1.25 (4-channel model); 2.5 (2-channel model); 5 (all channels interleaved)	1; 2 (2 channels interleaved)	1.25; 2.5 (2 channels interleaved)	2.5; 5 (2 channels interleaved)
Maximum memory (per channel/1 channel active)	125 ksample (4-channel model); 250 ksample (2-channel model); 500 ksample (50 Msample in segmented memory mode)	1 Msample; 2 Msample	10 Msample; 20 Msample (160 Msample in segmented memory mode ²⁾)	40 Msample; 80 Msample (400 Msample in segmented memory mode ²⁾)
Segmented memory	option	_	option	option
Acquisition rate (in waveforms/s)	50 000	10 000	50 000 (300 000 in fast segmented memory mode ²⁾)	64000 (2000000 in fast segmented memory mode ²⁾)
Trigger				
Options	advanced, digital trigger (14 trigger types) ²⁾	elementary (5 trigger types)	comprehensive (7 trigger types)	comprehensive (10 trigger types)
Mixed signal option				
Number of digital channels 1)	8	8	16	16
Sampling rate of digital channels (in Gsample/s)	1.25	1	1.25	two logic probes: 2.5 on each channel; one logic probe: 5 on each channel
Memory of digital channels	125 ksample	1 Msample	10 Msample	two logic probes: 40 Msample per channel; one logic probe: 80 Msample per channel
Analysis				
Cursor meas. types	4	13	4	4
Standard meas. functions	37	31	32	32
Mask test	elementary (tolerance mask around the signal)	elementary (tolerance mask around the signal)	elementary (tolerance mask around the signal)	elementary (tolerance mask around the signal)
Mathematics	elementary	elementary	basic (math on math)	basic (math on math)
Serial protocols triggering and decoding ¹⁾	I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, CAN-FD, SENT	I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN	I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN	I ² C, SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, I ² S, MIL-STD-1553, ARINC 429
Display functions	data logger	-	-	_
Applications 1), 2)	high-resolution frequency counter, advanced spectrum analysis, harmonics analysis, user scripting	digital voltmeter (DVM), com- ponent tester, fast Fourier trans- form (FFT)	digital voltmeter (DVM), fast Fourier transform (FFT), frequency response analysis	power, digital voltmeter (DVM), spectrum analysis and spectrogram, frequency response analysis
Compliance testing 1), 2)	=	=	=	-
Display and operation				
Size and resolution	7", color, 800 × 480 pixel	6.5", color, 640 × 480 pixel	10.1", color, 1280 x 800 pixel	10.1", color, 1280 × 800 pixel
Operation	optimized for touchscreen opera- tion, parallel button operation	optimized for fast button operation	optimized for touchscreen opera	tion, parallel button operation
General data				
Dimensions in mm (W \times H \times D)	201 × 293 × 74	285 × 175 × 140	390 × 220 × 152	390 × 220 × 152
Weight in kg	2.4	1.7	2.5	3.3
Battery	lithium-ion, > 4 h	-	-	-

¹⁾ Upgradeable.

²⁾ Requires an option.

Multi Domain	HD 16bit Domain	HD 16bit Multi Domain	HD 16bit Multi Domain
RTA4000	RTE1000	RTO6	RTP
200/350/500 MHz/1 GHz ¹⁾	200/350/500 MHz/1/1.5/2 GHz ¹⁾	600 MHz/1/2/3/4/6 GHz ¹⁾	4/6/8/13/16 GHz ¹⁾
4	2/4	4	4
10 bit	8 bit (up to 16 bit with HD mode)	8 bit (up to 16 bit with HD mode)	8 bit (up to 16 bit with HD mode)
500 μV to 10 V	500 μV to 10 V	1 mV to 10 V (500 µV to 10 V)	o bit (up to 10 bit marris mode)
500 μV to 1 V	500 µV to 1 V	1 mV to 1 V (500 µV to 1 V)	2 mV to 1 V
2.5; 5 (2 channels interleaved)	5	10; 20 (2 channels interleaved in 4 GHz and 6 GHz model)	20; 40 (2 channels interleaved)
100 Msample; 200 Msample (1 Gsample in segmented memory mode)	50 Msample/200 Msample	standard: 200 Msample/800 Msample; max. upgrade: 1 Gsample/2 Gsample	standard: 50 Msample/200 Msample; max. upgrade: 1 Gsample/2 Gsample
standard	standard	standard	standard
64000 (2000000 in fast segmented memory mode)	1 000 000 (1 600 000 in ultra- segmented memory mode)	1000000 (2500000 in ultra-segmented memory mode)	750 000 (3 200 000 in ultra-segmented memory mode)
comprehensive (10 trigger types)	advanced, digital trigger (13 trigger types)	advanced (includes zone trigger), digital trigger (14 trigger types)	advanced, digital trigger (14 trigger types) with real-time deembedding ²⁾ , high speed serial pattern trigger incl. 8/16 Gbps CDR ²⁾ , zone trigger ²⁾
	••		
16	16	16	16
two logic probes: 2.5 on each channel; one logic probe: 5 on each channel	5	5	5
two logic probes: 100 Msample per channel; one logic probe: 200 Msample per channel	100 Msample	200 Msample	200 Msample
4	3	3	3
32	47	47	47
elementary (tolerance mask around the signal)	advanced (user-configurable, hard- ware based)	advanced (user-configurable, hardware based)	advanced (user-configurable, hardware based)
basic (math on math)	advanced (formula editor)	advanced (formula editor)	advanced (formula editor)
I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, I ² S, MIL-STD-1553, ARINC 429	I ² C, SPI, UART/RS-232/RS-422/ RS-485, CAN, LIN, I ² S, MIL- STD-1553, ARINC 429, FlexRay™, CAN-FD, USB 2.0/HSIC, Ethernet, Manchester, NRZ, SENT, SpaceWire, CXPI, USB Power Delivery, automotive Ethernet 100BASE-T1	I ² C, SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, I ² S, MIL-STD-1553, ARINC 429, FlexRay™, CAN-FD, MIPI RFFE, USB 2.0/HSIC, MDIO, 8b10b, Ethernet, Manchester, NRZ, SENT, MIPI D-PHY, SpaceWire, MIPI M-PHY/UniPro, CXPI, USB 3.1 Gen1, USB-SSIC, PCIe 1.1/2.0, USB Power Delivery, automotive Ethernet 100BASE-T1/1000BASE-T1	I ² C, SPI, UART/RS-232/RS-422/RS-485, CAN, LIN, MIL-STD-1553, ARINC 429, CAN-FD, MIPI RFFE, USB 2.0/HSIC, MDIO, 8b10b, Ethernet, Manchester, NRZ, MIPI D-PHY, SpaceWire, MIPI M-PHY/UniPro, USB 3.1 Gen1/Gen2, USB-SSIC, PCIe 1.1/2.0/3.0, USB Power Delivery, automotive Ethernet 100BASE-T1/1000BASE-T1
_	histogram, trend, track ²⁾	histogram, trend, track ²⁾	histogram, trend, track
power, digital voltmeter (DVM), spectrum analysis and spectrogram, frequency response analysis	power, 16 bit high definition mode (standard), advanced spectrum anal- ysis and spectrogram	power, 16 bit high definition mode (standard), advanced spectrum analysis and spectrogram, jitter and noise decomposition, clock data recov- ery, I/Q data, RF analysis, deembedding, TDR/TDT analysis	16 bit high definition mode, advanced spectrum analysis and spectrogram, jitter and noise decomposition, RF analysis, real-time deembedding, TDR/TDT analysis, I/O data, HS serial pattern trigger with 8/16 Gbps CDR
	-	various options available (see PD 3607.2684.22)	various options available (see PD 5215.4152.22)
10.1", color, 1280 x 800 pixel	10.4", color, 1024 x 768 pixel	15.6", color, 1920 × 1080 pixel	12.1", color, 1280 × 800 pixel
optimized for touchscreen operation, par	rallel button operation		

450 × 315 × 204

10.7

427 × 249 × 204

8.6

390 × 220 × 152

3.3

441 × 285 × 316

18